Suppr超能文献

全基因组范围内类风湿关节炎易感性的基因-基因相互作用筛查。

A genome-wide screen of gene-gene interactions for rheumatoid arthritis susceptibility.

机构信息

Center for Population Studies and the Framingham Heart Study, National Heart, Lung, and Blood Institute/NIH, 73 Mt. Wayte Avenue, Framingham, MA 01702, USA.

出版信息

Hum Genet. 2011 May;129(5):473-85. doi: 10.1007/s00439-010-0943-z. Epub 2011 Jan 6.

Abstract

The objective of the study was to identify interacting genes contributing to rheumatoid arthritis (RA) susceptibility and identify SNPs that discriminate between RA patients who were anti-cyclic citrullinated protein positive and healthy controls. We analyzed two independent cohorts from the North American Rheumatoid Arthritis Consortium. A cohort of 908 RA cases and 1,260 controls was used to discover pairwise interactions among SNPs and to identify a set of single nucleotide polymorphisms (SNPs) that predict RA status, and a second cohort of 952 cases and 1,760 controls was used to validate the findings. After adjusting for HLA-shared epitope alleles, we identified and replicated seven SNP pairs within the HLA class II locus with significant interaction effects. We failed to replicate significant pairwise interactions among non-HLA SNPs. The machine learning approach "random forest" applied to a set of SNPs selected from single-SNP and pairwise interaction tests identified 93 SNPs that distinguish RA cases from controls with 70% accuracy. HLA SNPs provide the most classification information, and inclusion of non-HLA SNPs improved classification. While specific gene-gene interactions are difficult to validate using genome-wide SNP data, a stepwise approach combining association and classification methods identifies candidate interacting SNPs that distinguish RA cases from healthy controls.

摘要

本研究旨在鉴定与类风湿关节炎(RA)易感性相关的相互作用基因,并鉴定可区分抗环瓜氨酸肽阳性 RA 患者和健康对照的 SNP。我们分析了来自北美类风湿关节炎联盟的两个独立队列。一个由 908 例 RA 病例和 1260 例对照组成的队列用于发现 SNP 之间的成对相互作用,并确定一组可预测 RA 状态的单核苷酸多态性(SNP),第二个由 952 例病例和 1760 例对照组成的队列用于验证发现。在调整 HLA 共享表位等位基因后,我们在 HLA Ⅱ类基因座内鉴定并复制了具有显著相互作用效应的七个 SNP 对。我们未能复制非 HLA SNP 之间的显著成对相互作用。应用于单 SNP 和成对相互作用测试中选择的一组 SNP 的机器学习方法“随机森林”可区分 RA 病例和对照,准确率为 70%。HLA SNP 提供了最多的分类信息,包含非 HLA SNP 可提高分类准确性。虽然使用全基因组 SNP 数据很难验证特定的基因-基因相互作用,但结合关联和分类方法的逐步方法可鉴定可区分 RA 病例和健康对照的候选相互作用 SNP。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验