Suppr超能文献

监督机器学习和逻辑回归确定了 PTPN22 与类风湿关节炎的新型上位风险因素。

Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis.

机构信息

University of California, Berkeley, 94720, USA.

出版信息

Genes Immun. 2010 Apr;11(3):199-208. doi: 10.1038/gene.2009.110. Epub 2010 Jan 21.

Abstract

Investigating genetic interactions (epistasis) has proven difficult despite the recent advances of both laboratory methods and statistical developments. With no 'best' statistical approach available, combining several analytical methods may be optimal for detecting epistatic interactions. Using a multi-stage analysis that incorporated supervised machine learning and methods of association testing, we investigated epistatic interactions with a well-established genetic factor (PTPN22 1858T) in a complex autoimmune disease (rheumatoid arthritis (RA)). Our analysis consisted of four principal stages: Stage I (data reduction)-identifying candidate chromosomal regions in 292 affected sibling pairs, by predicting PTPN22 concordance using multipoint identity-by-descent probabilities and a supervised machine learning algorithm (Random Forests); Stage II (extension analysis)-testing detailed genetic data within candidate chromosomal regions for epistasis with PTPN22 1858T in 677 cases and 750 controls using logistic regression; Stage III (replication analysis)-confirmation of epistatic interactions in 947 cases and 1756 controls; Stage IV (combined analysis)-a pooled analysis including all 1624 RA cases and 2506 control subjects for final estimates of effect size. A total of seven replicating epistatic interactions were identified. SNP variants within CDH13, MYO3A, CEP72 and near WFDC1 showed significant evidence for interaction with PTPN22, affecting susceptibility to RA.

摘要

尽管实验室方法和统计方法都有了最近的进展,但对遗传相互作用(上位性)的研究仍然很困难。由于没有最佳的统计方法,因此结合几种分析方法可能是检测上位性相互作用的最佳方法。我们使用多阶段分析,结合了监督机器学习和关联测试方法,在一种已确立的遗传因素(PTPN22 1858T)和一种复杂的自身免疫性疾病(类风湿关节炎(RA))中研究了上位性相互作用。我们的分析包括四个主要阶段:第一阶段(数据缩减)-通过使用多点身份相关概率和监督机器学习算法(随机森林)预测 PTPN22 一致性,在 292 对受影响的同胞对中确定候选染色体区域;第二阶段(扩展分析)-在 677 例病例和 750 例对照中使用逻辑回归在候选染色体区域内测试与 PTPN22 1858T 的详细遗传数据的上位性;第三阶段(复制分析)-在 947 例病例和 1756 例对照中确认上位性相互作用;第四阶段(综合分析)-对所有 1624 例 RA 病例和 2506 例对照进行合并分析,以最终估计效应大小。共发现了七个复制的上位性相互作用。CDH13、MYO3A、CEP72 和 WFDC1 附近的 SNP 变体与 PTPN22 存在显著的相互作用证据,影响 RA 的易感性。

相似文献

引用本文的文献

2
Scoping review: Machine learning interventions in the management of healthcare systems.综述:机器学习在医疗系统管理中的干预措施
Digit Health. 2024 Oct 22;10:20552076221144095. doi: 10.1177/20552076221144095. eCollection 2024 Jan-Dec.
10
Brief Survey on Machine Learning in Epistasis.上位效应中机器学习的简要综述
Methods Mol Biol. 2021;2212:169-179. doi: 10.1007/978-1-0716-0947-7_11.

本文引用的文献

6
Genome-wide association studies in ADHD.注意力缺陷多动障碍的全基因组关联研究。
Hum Genet. 2009 Jul;126(1):13-50. doi: 10.1007/s00439-009-0663-4. Epub 2009 Apr 22.
7
H-cadherin expression reduces invasion of malignant melanoma.H-钙黏蛋白的表达可降低恶性黑色素瘤的侵袭能力。
Pigment Cell Melanoma Res. 2009 Jun;22(3):296-306. doi: 10.1111/j.1755-148X.2009.00568.x. Epub 2009 Apr 6.
9
Recent advances in the genetics of autoimmune disease.自身免疫性疾病遗传学的最新进展。
Annu Rev Immunol. 2009;27:363-91. doi: 10.1146/annurev.immunol.021908.132653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验