Suppr超能文献

用于肌肉疲劳估计的 Lempel-Ziv 复杂度测度。

A Lempel-Ziv complexity measure for muscle fatigue estimation.

机构信息

Department of Electrical and Computer Engineering, McGill University, Canada.

出版信息

J Electromyogr Kinesiol. 2011 Apr;21(2):236-41. doi: 10.1016/j.jelekin.2010.12.003. Epub 2011 Jan 8.

Abstract

This paper presents a Lempel-Ziv complexity measure for analysis of surface electromyography signals. The Lempel-Ziv measure provides a metric for the number of distinct deterministic patterns and the rate of their creation in signals. We propose a ternary Lempel-Ziv measure, improving upon the binary Lempel-Ziv measure, and making it more suited for the analysis of biological signals. The Lempel-Ziv measure is evaluated with a muscle fatigue experiment in which participants perform static, cyclic, and random contractions. Results show this complexity measure shows a greater correlation to a steadily increasing muscle fatigue level compared to the conventional median frequency. This measure is computationally easy to compute and does not require power spectrum estimation and signal stationarity assumptions.

摘要

本文提出了一种用于分析表面肌电信号的 Lempel-Ziv 复杂度测度。Lempel-Ziv 测度提供了一种用于测量信号中不同确定性模式的数量及其生成速度的指标。我们提出了一种三进制 Lempel-Ziv 测度,对二进制 Lempel-Ziv 测度进行了改进,使其更适合于生物信号的分析。该复杂度测度通过一项肌肉疲劳实验进行了评估,参与者在实验中进行了静态、循环和随机收缩。结果表明,与传统的中值频率相比,该复杂度测度与逐渐增加的肌肉疲劳水平具有更高的相关性。该测度计算简单,不需要功率谱估计和信号平稳性假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验