Suppr超能文献

锂匹鲁卡品诱导癫痫发生过程中线粒体和组织氧化还原状态的持续损伤。

Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis.

机构信息

Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.

出版信息

J Neurochem. 2010 Dec;115(5):1172-82. doi: 10.1111/j.1471-4159.2010.07013.x. Epub 2010 Oct 26.

Abstract

Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.

摘要

线粒体功能障碍和氧化应激已知在急性癫痫发作后发生,但它们在癫痫发生过程中的贡献在很大程度上尚不清楚。本研究的目的是确定锂-匹鲁卡品颞叶癫痫模型中癫痫发生过程中线粒体氧化应激的程度、氧化还原状态的变化以及线粒体 DNA(mtDNA)损伤。在锂-匹鲁卡品给药后不同时间点(24 小时至 3 个月)评估 Sprague-Dawley 大鼠海马体和新皮层中线粒体氧化应激、组织和线粒体氧化还原状态变化以及 mtDNA 损伤。在癫痫发生过程中,观察到与海马体 mtDNA 损伤频率增加相一致的线粒体过氧化氢(H2O2)产生的时间依赖性增加。急性增加(24-48 小时)H2O2 产生和 mtDNA 损伤频率取决于初始癫痫持续状态期间惊厥性癫痫发作的严重程度。在整个癫痫发生过程中(即急性发作(24-48 小时)、“潜伏期”(48 小时至 7 天)和慢性癫痫(21 天至 3 个月)),组织中 GSH、GSH/GSSG、辅酶 A(CoASH)和 CoASH/CoASSG 的水平一直受到损害。结合我们之前的工作,这些结果表明在癫痫发生过程中线粒体氧化应激、基因组不稳定性和线粒体特定氧化还原状态的持续损伤具有模型独立性。在潜伏期,除了癫痫发生的急性和慢性阶段之外,线粒体和组织氧化还原状态的持久损伤表明,氧化还原依赖过程可能有助于实验性颞叶癫痫的癫痫发生进展。

相似文献

1
Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis.
J Neurochem. 2010 Dec;115(5):1172-82. doi: 10.1111/j.1471-4159.2010.07013.x. Epub 2010 Oct 26.
2
Mitochondrial DNA damage and impaired base excision repair during epileptogenesis.
Neurobiol Dis. 2008 Apr;30(1):130-8. doi: 10.1016/j.nbd.2007.12.009. Epub 2008 Jan 5.
3
Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy.
Neurobiol Dis. 2014 Apr;64:8-15. doi: 10.1016/j.nbd.2013.12.006. Epub 2013 Dec 19.
4
Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?
J Bioenerg Biomembr. 2010 Dec;42(6):449-55. doi: 10.1007/s10863-010-9320-9.
5
Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithium-pilocarpine model of temporal lobe epilepsy.
Prog Neuropsychopharmacol Biol Psychiatry. 2009 Apr 30;33(3):456-62. doi: 10.1016/j.pnpbp.2009.01.005. Epub 2009 Jan 21.
6
Seizure-induced changes in mitochondrial redox status.
Free Radic Biol Med. 2006 Jan 15;40(2):316-22. doi: 10.1016/j.freeradbiomed.2005.08.026. Epub 2005 Oct 14.
7
Mitochondrial involvement and oxidative stress in temporal lobe epilepsy.
Free Radic Biol Med. 2013 Sep;62:121-131. doi: 10.1016/j.freeradbiomed.2013.02.002. Epub 2013 Feb 11.
9
Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.
Neurobiol Dis. 2015 Oct;82:289-297. doi: 10.1016/j.nbd.2015.07.005. Epub 2015 Jul 13.
10
Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain.
J Neurochem. 2015 Dec;135(5):1007-18. doi: 10.1111/jnc.13360. Epub 2015 Oct 8.

引用本文的文献

1
Neurodevelopmental disorders and gut-brain interactions: exploring the therapeutic potential of pycnogenol through microbial-metabolic-neural networks.
Front Cell Infect Microbiol. 2025 Jun 11;15:1601888. doi: 10.3389/fcimb.2025.1601888. eCollection 2025.
2
The Oxidative Stress in Epilepsy-Focus on Melatonin.
Int J Mol Sci. 2024 Dec 2;25(23):12943. doi: 10.3390/ijms252312943.
6
Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy.
Antioxidants (Basel). 2023 May 5;12(5):1049. doi: 10.3390/antiox12051049.
8
Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence.
Int J Mol Sci. 2022 Dec 19;23(24):16181. doi: 10.3390/ijms232416181.
9
Potential new roles for glycogen in epilepsy.
Epilepsia. 2023 Jan;64(1):29-53. doi: 10.1111/epi.17412. Epub 2022 Nov 1.
10
The antiepileptic potential of Linn in experimental animal models: Effect on brain GABA levels and molecular mechanisms.
Saudi J Biol Sci. 2022 May;29(5):3600-3609. doi: 10.1016/j.sjbs.2022.02.059. Epub 2022 Mar 4.

本文引用的文献

1
Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants.
Infect Disord Drug Targets. 2009 Aug;9(4):376-89. doi: 10.2174/187152609788922519.
2
Nitrative and oxidative stress in toxicology and disease.
Toxicol Sci. 2009 Nov;112(1):4-16. doi: 10.1093/toxsci/kfp179. Epub 2009 Aug 5.
3
Development of spontaneous recurrent seizures after kainate-induced status epilepticus.
J Neurosci. 2009 Feb 18;29(7):2103-12. doi: 10.1523/JNEUROSCI.0980-08.2009.
4
How mitochondria produce reactive oxygen species.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.
5
Neurometabolism in human epilepsy.
Epilepsia. 2008;49 Suppl 3(0 3):31-41. doi: 10.1111/j.1528-1167.2008.01508.x.
6
Mitochondrial DNA damage and impaired base excision repair during epileptogenesis.
Neurobiol Dis. 2008 Apr;30(1):130-8. doi: 10.1016/j.nbd.2007.12.009. Epub 2008 Jan 5.
7
Seizure-induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension.
J Neurochem. 2008 Jan;104(1):264-70. doi: 10.1111/j.1471-4159.2007.04974.x. Epub 2007 Oct 22.
9
Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain.
J Biol Chem. 2007 May 11;282(19):14186-93. doi: 10.1074/jbc.M700827200. Epub 2007 Mar 27.
10
Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine.
Brain Res Bull. 2007 Jan 9;71(4):372-5. doi: 10.1016/j.brainresbull.2006.10.005. Epub 2006 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验