Stuart Elizabeth A, Ialongo Nicholas S
Johns Hopkins Bloomberg School of Public Health.
Multivariate Behav Res. 2010 Jul 1;45(4):746-765. doi: 10.1080/00273171.2010.503544.
This work examines ways to make the best use of limited resources when selecting individuals to follow up in a longitudinal study estimating causal effects. In the setting under consideration, covariate information is available for all individuals but outcomes have not yet been collected and may be expensive to gather, and thus only a subset of the comparison subjects will be followed. Expressions in Rubin and Thomas (1996, 2000) show the benefits that can be obtained, in terms of reduced bias and variance of the estimated treatment effect, of selecting comparison individuals well-matched to those in the treated group, as compared to a random sample of comparison individuals. We primarily consider non-experimental settings but also consider implications for randomized trials. The methods are illustrated using data from the Johns Hopkins University Baltimore Prevention Program, which included data collection from age 6 to young adulthood of participants in an evaluation of two early elementary-school based universal prevention programs.
这项工作探讨了在纵向研究中选择个体进行随访以估计因果效应时,如何充分利用有限资源的方法。在所考虑的情况下,所有个体都有协变量信息,但结果尚未收集,且收集成本可能很高,因此只会对一部分对照个体进行随访。鲁宾和托马斯(1996年、2000年)的表达式表明,与随机抽取的对照个体样本相比,选择与治疗组个体匹配良好的对照个体,在降低估计治疗效果的偏差和方差方面能够获得益处。我们主要考虑非实验性设置,但也考虑对随机试验的影响。使用约翰霍普金斯大学巴尔的摩预防项目的数据对这些方法进行了说明,该项目包括对两项基于小学早期的普遍预防项目进行评估的参与者从6岁到青年期的数据收集。