Suppr超能文献

年龄匹配的病例对照数据应采用无条件还是条件逻辑回归模型?

Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data?

作者信息

Kuo Chia-Ling, Duan Yinghui, Grady James

机构信息

Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT, United States.

Department of Community Medicine and Health Care, University of Connecticut Health Center, Farmington, CT, United States.

出版信息

Front Public Health. 2018 Mar 2;6:57. doi: 10.3389/fpubh.2018.00057. eCollection 2018.

Abstract

Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.

摘要

在病例对照研究中,常通过对人口统计学变量进行匹配来在设计阶段调整混杂因素。有一种观点认为,匹配数据需要采用匹配方法进行分析。条件逻辑回归已成为处理匹配病例对照数据稀疏问题的标准方法。然而,当病例与对照之间的匹配不唯一,且一个病例可以与其他对照匹配而不显著改变关联性时,稀疏数据问题对于宽松匹配数据可能并非一个需要担忧的问题。基于少数人口统计学变量进行匹配的数据显然属于宽松匹配数据,并且我们假设无条件逻辑回归是一种合适的分析方法。为验证这一假设,我们使用模拟的匹配病例对照数据,通过估计精度和假设检验来比较无条件逻辑回归模型和条件逻辑回归模型。我们的结果支持了我们的假设;然而,无条件模型对于匹配过程中不仅使病例和对照在匹配变量上相似,而且在暴露状态上也相似所导致的匹配偏差,不如条件模型稳健。当研究设计涉及其他复杂特征或计算负担较高时,如果病例和对照之间匹配变量的分布差异不是极大,那么对于宽松匹配数据中的匹配操作可以忽略不计,因为这样做在检验和估计方面的损失微不足道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/851d/5840200/83b67f1e2062/fpubh-06-00057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验