Boutin Claude, Geindreau Christian
Université de Lyon-Ecole Nationale des Travaux Publics de l'Etat-LGM/DGCB, CNRS, 3237 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036313. doi: 10.1103/PhysRevE.82.036313. Epub 2010 Sep 16.
This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.
本文通过结合基于双复合球形图案的周期性介质均匀化方法(HPM)和自洽方案(SCM),对多孔介质的传输参数(扩散系数、动态渗透率、热渗透率、俘获常数)进行了研究。首先,通过使用与所考虑问题无关的系统论证,建立了HPM和SCM方法之间的联系。结果表明,周期性条件可以用通过代表性单元体积整个表面的零通量和零能量来代替。因此,对于周期形态“接近”SCM图案的材料,SCM解可被视为通过HPM导出的局部问题的几何近似。然后,将这些结果应用于推导多孔介质有效扩散系数、动态渗透率、热渗透率和俘获常数的估计值。将这些SCM估计值与在球体和多面体的周期性阵列上获得的数值HPM结果进行了比较。结果表明,对于孔隙率大于0.6的球体周期性堆积,SCM估计值能很好地解析有效参数,而对于整个孔隙率范围内的多面体周期性堆积,两者的一致性非常好。