Suppr超能文献

不可压缩瑞利-迈斯科夫不稳定性中界面运动的重整化群方法。

Renormalization group approach to interfacial motion in incompressible Richtmyer-Meshkov instability.

作者信息

Matsuoka Chihiro

机构信息

Department of Physics, Graduate School of Science and Technology, Ehime University, Bunkyocho 2-5, Matsuyama 790-8577, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036320. doi: 10.1103/PhysRevE.82.036320. Epub 2010 Sep 24.

Abstract

Nonlinear interfacial motion in incompressible Richtmyer-Meshkov instability is theoretically investigated using the renormalization group approach. The amplitude equation describing the asymptotic interfacial motion is derived using this approach. A comparison with calculations carried out by the weakly nonlinear analysis is performed for various Atwood numbers and the validity of the renormalization group approach is discussed. We show that this approach suppresses the divergence in the perturbative solutions obtained by the weakly nonlinear analysis and provides better approximations for the growth rate of bubbles and spikes and interfacial profiles at the asymptotic nonlinear stage without requiring the use of Padé approximants.

摘要

采用重整化群方法对不可压缩瑞利-迈斯科夫不稳定性中的非线性界面运动进行了理论研究。利用该方法推导了描述渐近界面运动的振幅方程。针对不同的阿特伍德数,与弱非线性分析的计算结果进行了比较,并讨论了重整化群方法的有效性。我们表明,该方法抑制了弱非线性分析得到的微扰解中的发散,并为渐近非线性阶段气泡和尖峰的增长率以及界面轮廓提供了更好的近似,而无需使用帕德近似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验