Suppr超能文献

不可压缩瑞利 - 迈什科夫不稳定性中圆柱涡旋片的完全非线性演化

Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer-Meshkov instability.

作者信息

Matsuoka Chihiro, Nishihara Katsunobu

机构信息

Department of Physics, Ehime University, Matsuyama, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):055304. doi: 10.1103/PhysRevE.73.055304. Epub 2006 May 30.

Abstract

Fully nonlinear motion of a circular interface in incompressible Richtmyer-Meshkov instability is investigated by treating it as a nonuniform vortex sheet between two different fluids. There are many features in cylindrical geometry such as the existence of two independent spatial scales, radius and wavelength, and the ingoing and outgoing growth of bubbles and spikes. Geometrical complexities lead to the results that nonlinear dynamics of the vortex sheet is determined from the inward and outward motion rather than bubbles and spikes, and that the nonlinear growth strongly depends on mode number.

摘要

通过将不可压缩的瑞特迈尔-梅什科夫不稳定性中圆形界面的完全非线性运动视为两种不同流体之间的非均匀涡旋片来进行研究。圆柱几何结构中有许多特征,例如存在两个独立的空间尺度,即半径和波长,以及气泡和尖峰的向内和向外生长。几何复杂性导致了这样的结果:涡旋片的非线性动力学由向内和向外运动而非气泡和尖峰决定,并且非线性增长强烈依赖于模态数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验