Suppr超能文献

液体和气体中的自热泳现象与热自扩散

Self-thermophoresis and thermal self-diffusion in liquids and gases.

作者信息

Brenner Howard

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036325. doi: 10.1103/PhysRevE.82.036325. Epub 2010 Sep 30.

Abstract

This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

摘要

本文证明了自热泳现象的存在,即在静态单组分液体或气体中,由温度梯度产生的虚拟热泳力作用于该流体的单个分子,其方式与“真实”热泳力作用于浸没在同一流体中的宏观非布朗物体的方式大致相同。反过来,自热泳与布朗自扩散共同作用,导致了单组分流体中的热自扩散现象。后者为纯流体中的热泳和二元混合物中的热扩散(后者由物理化学惰性溶质的稀溶液组成,其分子比溶剂连续体的分子大)提供了定量解释。具体而言,自热泳理论为在温度梯度∇T作用下的单组分流体中宏观物体的热泳速度U以及与二元胶体或大分子混合物密切相关的二元热扩散系数D{T}提供了一个简单的表达式。预测表达式U = -D{T}∇T≡ -βD{S}∇T和D{T}=βD{S}(其中β和D{S}分别为纯溶剂的热膨胀系数和等温自扩散系数)均被指出与液体和气体的实验数据相当吻合。讨论了预测的D{T}值与这些数据存在系统偏差的可能来源。这似乎是第一个适用于液体和气体的成功热扩散理论,考虑到这两类流体各自的热扩散率和热泳速度相差多达六个数量级,这是一项相当重要的成就。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验