Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland.
Nano Lett. 2014 Mar 12;14(3):1113-9. doi: 10.1021/nl402696q. Epub 2014 Feb 13.
We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to compute all electronic and vibrational properties and electron-phonon coupling matrix elements; the phonon-limited resistivity is then calculated within a Boltzmann-transport approach. An effective tight-binding model, validated against first-principles results, is also used to study the role of electron-electron interactions at the level of many-body perturbation theory. The results found are in excellent agreement with recent experimental data on graphene samples at high carrier densities and elucidate the role of the different phonon modes in limiting electron mobility. Moreover, we find that the resistivity arising from scattering with transverse acoustic phonons is 2.5 times higher than that from longitudinal acoustic phonons. Last, high-energy, optical, and zone-boundary phonons contribute as much as acoustic phonons to the intrinsic electrical resistivity even at room temperature and become dominant at higher temperatures.
我们对石墨烯的温度和密度依赖的本征电阻率进行了第一性原理研究。我们使用密度泛函理论和密度泛函微扰理论以及非常精确的 Wannier 插值来计算所有的电子和振动性质以及电子-声子耦合矩阵元;然后在玻尔兹曼输运方法中计算声子限制的电阻率。我们还使用有效的紧束缚模型(经过第一性原理结果验证)来研究多体微扰理论水平上的电子-电子相互作用的作用。所得结果与高载流子密度下石墨烯样品的最新实验数据非常吻合,并阐明了不同声子模式在限制电子迁移率方面的作用。此外,我们发现,与纵向声学声子相比,横声学声子散射引起的电阻率要高 2.5 倍。最后,即使在室温下,高能、光学和带边声子对本征电阻率的贡献与声学声子一样大,并且在更高的温度下变得占主导地位。