Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA.
Geobiology. 2011 Mar;9(2):140-65. doi: 10.1111/j.1472-4669.2010.00264.x. Epub 2011 Jan 14.
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.
关键带(CZ)研究调查了调节地球表面的化学、物理和生物过程。在这里,我们提出了 12 个假设,必须对其进行测试以提高我们对 CZ 的理解:(1)植物将太阳能转化为化学能,调节碳、水和养分通过植物-微生物土壤网络的流动,从而控制生物风化的位置和范围。(2)生物化学计量学通过风化驱动矿物化学计量和分布的变化。(3)在侵蚀较少的景观中,生物学在初始演替过程中驱动风化,而风化在长期内驱动生物学。(4)在侵蚀的景观中,风化前沿在深度上的推进与通过生物过程的表面剥蚀耦合。(5)生物学塑造了关键带的地形。(6)从包含生物地球化学反应速率和地貌传输定律的模型中可以预测气候强迫对自然系统剥蚀速率的影响。(7)全球气温上升将增加关键带的碳损失。(8)大气中 P(CO2) 的升高将增加土壤中矿物风化的速率和范围。(9)河流溶质通量将主要由于水通量的变化,其次由于生物介导的风化的变化,对气候变化做出响应。(10)土地利用变化将比气候变化对关键带过程和排放的影响更大。(11)在许多严重改变的环境中,水文过程的恢复在几十年或更短的时间内是可能的,而生物多样性和生物地球化学过程的恢复需要更长的时间。(12)生物地球化学特性赋予了生态系统健康、功能和服务发生快速和不可逆转损失的阈值或转折点。