Suppr超能文献

估计罕见事件的概率:处理零失效数据。

Estimating the probability of rare events: addressing zero failure data.

机构信息

Department of Management Science, University of Strathclyde,Glasgow G1 1QE, Scotland.

出版信息

Risk Anal. 2011 Jul;31(7):1120-32. doi: 10.1111/j.1539-6924.2010.01568.x. Epub 2011 Jan 14.

Abstract

Traditional statistical procedures for estimating the probability of an event result in an estimate of zero when no events are realized. Alternative inferential procedures have been proposed for the situation where zero events have been realized but often these are ad hoc, relying on selecting methods dependent on the data that have been realized. Such data-dependent inference decisions violate fundamental statistical principles, resulting in estimation procedures whose benefits are difficult to assess. In this article, we propose estimating the probability of an event occurring through minimax inference on the probability that future samples of equal size realize no more events than that in the data on which the inference is based. Although motivated by inference on rare events, the method is not restricted to zero event data and closely approximates the maximum likelihood estimate (MLE) for nonzero data. The use of the minimax procedure provides a risk adverse inferential procedure where there are no events realized. A comparison is made with the MLE and regions of the underlying probability are identified where this approach is superior. Moreover, a comparison is made with three standard approaches to supporting inference where no event data are realized, which we argue are unduly pessimistic. We show that for situations of zero events the estimator can be simply approximated with 1/2.5n, where n is the number of trials.

摘要

传统的统计程序在没有事件发生时会导致事件概率的估计为零。对于已经实现零事件的情况,已经提出了替代的推理程序,但这些程序通常是特定的,依赖于对已经实现的数据选择方法。这种依赖于数据的推理决策违反了基本的统计原则,导致难以评估收益的估计程序。在本文中,我们通过对未来等大小样本实现的事件数不超过基于推理的数据中的事件数的概率进行最小最大推理,来估计事件发生的概率。尽管该方法是受稀有事件推理的启发,但不限于零事件数据,并非常接近非零数据的最大似然估计(MLE)。最小最大程序的使用提供了一种风险厌恶的推理程序,在这种程序中没有实现事件。与 MLE 进行了比较,并确定了该方法优越的潜在概率区域。此外,还与三种在没有事件数据的情况下支持推理的标准方法进行了比较,我们认为这些方法过于悲观。我们表明,对于零事件情况,可以用 1/2.5n (其中 n 是试验次数)简单地近似估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验