WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
Acta Biomater. 2011 Apr;7(4):1441-51. doi: 10.1016/j.actbio.2011.01.011. Epub 2011 Jan 11.
Interface tissue engineering (ITE) is a rapidly developing field that aims to fabricate biological tissue alternates with the goal of repairing or regenerating the functions of diseased or damaged zones at the interface of different tissue types (also called "interface tissues"). Notable examples of the interface tissues in the human body include ligament-to-bone, tendon-to-bone and cartilage-to-bone. Engineering interface tissues is a complex process, which requires a combination of specialized biomaterials with spatially organized material composition, cell types and signaling molecules. Therefore, the use of conventional biomaterials (monophasic or composites) for ITE has certain limitations to help stimulate the tissue integration or recreating the structural organization at the junction of different tissue types. The advancement of micro- and nanotechnologies enable us to develop systems with gradients in biomaterials properties that encourage the differentiation of multiple cell phenotypes and subsequent tissue development. In this review we discuss recent developments in the fabrication of gradient biomaterials for controlling cellular behavior such as migration, differentiation and heterotypic interactions. Moreover, we give an overview of potential uses of gradient biomaterials in engineering interface tissues such as soft tissues (e.g. cartilage) to hard tissues (e.g. bone), with illustrated experimental examples. We also address fundamentals of interface tissue organization, various gradient biomaterials used in ITE, micro- and nanotechnologies employed for the fabrication of those gradients, and certain challenges that must be met in order for ITE to reach its full potential.
界面组织工程(ITE)是一个快速发展的领域,旨在制造具有生物学功能的组织替代物,目标是修复或再生不同组织类型界面处病变或受损区域的功能(也称为“界面组织”)。人体中显著的界面组织包括韧带-骨、肌腱-骨和软骨-骨。工程界面组织是一个复杂的过程,需要将具有空间组织材料组成、细胞类型和信号分子的特殊生物材料结合起来。因此,传统生物材料(单相或复合材料)在 ITE 中的应用具有一定的局限性,难以帮助刺激组织整合或重建不同组织类型交界处的结构组织。微纳技术的进步使我们能够开发具有生物材料性能梯度的系统,这些系统可以促进多种细胞表型的分化和随后的组织发育。在这篇综述中,我们讨论了用于控制细胞行为(如迁移、分化和异型相互作用)的梯度生物材料制造的最新进展。此外,我们概述了梯度生物材料在工程界面组织中的潜在用途,如软组织(如软骨)到硬组织(如骨),并提供了实验实例。我们还讨论了界面组织的组织基础、ITE 中使用的各种梯度生物材料、用于制造这些梯度的微纳技术以及 ITE 要充分发挥其潜力必须克服的某些挑战。