Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Berlin, Germany.
Pharm Dev Technol. 2012 May-Jun;17(3):353-62. doi: 10.3109/10837450.2010.542163. Epub 2011 Jan 17.
A major obstacle to the application of nanostructured lipid carriers (NLCs) as carriers for hydrophilic drugs is the limited loading capacity (LC) and encapsulation efficiency (EE) of NLCs for these molecules. The purpose of this research was to design and implement a strategy to enhance the LC and EE of NLCs for the hydrophilic drug, didanosine (DDI). DDI was dispersed in Transcutol(®) HP and the particle size of DDI in the liquid lipid was reduced gradually using hot high pressure homogenization (HPH). The product obtained thereafter was added to Precirol(®) ATO 5 and the hot mixture was immediately dried using liquid nitrogen. The dried materials were then ground and passed through a 200 μm sieve and the solid lipid particles were dispersed in a surfactant solution and subsequently used to manufacture DDI-loaded NLCs using cold HPH. The LC and EE of NLCs for DDI manufactured using the new strategy were 3.39 ± 0.63% and 51.58 ± 1.31%, respectively, compared to 0.079 ± 0.001% and 32.45 ± 0.08%, respectively, obtained when DDI-loaded NLCs were produced using conventional hot HPH. The enhanced LC and EE for DDI make NLCs a potential technology for the oral administration of DDI to paediatric patients.
作为亲水性药物载体,纳米结构脂质载体(NLC)的应用存在一个主要障碍,即其对这些分子的载药量(LC)和包封效率(EE)有限。本研究旨在设计并实施一种策略,以提高亲水性药物地达诺新(DDI)的 NLC 的 LC 和 EE。将 DDI 分散在 Transcutol(®) HP 中,使用热高压匀质法(HPH)逐渐减小 DDI 在液态脂质中的粒径。此后获得的产物添加到 Precirol(®) ATO 5 中,并立即使用液氮干燥热混合物。然后将干燥的材料研磨并通过 200μm 筛网,将固体脂质颗粒分散在表面活性剂溶液中,随后使用冷 HPH 制造载有 DDI 的 NLC。与使用传统热 HPH 制造载有 DDI 的 NLC 时分别获得的 0.079±0.001%和 32.45±0.08%相比,使用新策略制造的 DDI-NLC 的 LC 和 EE 分别为 3.39±0.63%和 51.58±1.31%。DDI 的 LC 和 EE 增强使 NLC 成为向儿科患者口服给予 DDI 的潜在技术。