Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
Metab Eng. 2011 Mar;13(2):159-68. doi: 10.1016/j.ymben.2011.01.003. Epub 2011 Jan 15.
Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L(-1) lysine and a productivity of 4.0 g L(-1) h(-1) in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.
在这里,我们通过对野生型谷氨酸棒杆菌进行系统代谢工程,描述了一种遗传定义的 l-赖氨酸高产菌株的开发。在编码中心代谢酶的基因中仅实施了 12 个明确的基于基因组的改变,就如预期的那样,将主要碳通量重新定向到通过计算机建模预测的最佳途径。最终工程化的谷氨酸棒杆菌菌株能够以每克葡萄糖 0.55 克的高产率生产赖氨酸,在分批补料培养中的赖氨酸浓度为 120 克/升,生产率为 4.0 克/升/小时。在工程化过程中,野生型的特定葡萄糖摄取率可以完全维持,提供了一种高可行性的生产菌株。就这些关键标准而言,本研究中创建的遗传定义菌株处于过去五十年中经典衍生生产菌株的最大值。这是首次报道一种合理衍生的赖氨酸生产菌株,可能具有与工业应用竞争的能力。这里报道的基于设计的代谢工程策略可以作为一种通用概念,用于理性开发微生物作为生物生产的高效细胞工厂。