Suppr超能文献

木糖利用谷氨酸棒杆菌的系统代谢工程生产 1,5-二氨基戊烷。

Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.

机构信息

Institute of Biochemical Engineering, Technische Universität, Braunschweig, Germany.

出版信息

Biotechnol J. 2013 May;8(5):557-70. doi: 10.1002/biot.201200367. Epub 2013 Apr 16.

Abstract

The sustainable production of industrial platform chemicals is one of the great challenges facing the biotechnology field. Ideally, fermentation feedstocks would rather rely on industrial waste streams than on food-based raw materials. Corynebacterium glutamicum was metabolically engineered to produce the bio-nylon precursor 1,5-diaminopentane from the hemicellulose sugar xylose. Comparison of a basic diaminopentane producer strain on xylose and glucose feedstocks revealed a 30% reduction in diaminopentane yield and productivity on the pentose sugar. The integration of in vivo and in silico metabolic flux analysis by (13) C and elementary modes identified bottlenecks in the pentose phosphate pathway and the tricarboxylic acid cycle that limited performance on xylose. By the integration of global transcriptome profiling, this could be specifically targeted to the tkt operon, genes that encode for fructose bisphosphatase (fbp) and isocitrate dehydrogenase (icd), and to genes involved in formation of lysine (lysE) and N-acetyl diaminopentane (act). This was used to create the C. glutamicum strain DAP-Xyl1 icd(GTG) Peftu fbp Psod tkt Δact ΔlysE. The novel producer, designated DAP-Xyl2, exhibited a 54% increase in product yield to 233 mmol mol(-1) and a 100% increase in productivity to 1 mmol g(-1) h(-1) on the xylose substrate. In a fed-batch process, the strain achieved 103 g L(-1) of diaminopentane from xylose with a product yield of 32%. Xylose utilization is currently one of the most relevant metabolic engineering subjects. In this regard, the current work is a milestone in industrial strain engineering of C. glutamicum. See accompanying commentary by Hiroshi Shimizu DOI: 10.1002/biot.201300097.

摘要

工业平台化学品的可持续生产是生物技术领域面临的重大挑战之一。理想情况下,发酵原料最好依赖工业废料流,而不是基于食物的原材料。通过代谢工程改造谷氨酸棒杆菌,使其能够利用半纤维素糖木糖生产生物尼龙前体 1,5-二氨基戊烷。在木糖和葡萄糖两种基质上,比较基本的二氨基戊烷生产菌株,发现戊糖的二氨基戊烷产量和生产力降低了 30%。通过(13)C 和基本代谢通量分析的体内和体外代谢通量分析,确定了戊糖磷酸途径和三羧酸循环中的瓶颈,从而限制了木糖的性能。通过整合全局转录组谱分析,可以将其专门针对 tkt 操纵子、编码果糖二磷酸酶 (fbp)和异柠檬酸脱氢酶 (icd)的基因以及参与赖氨酸 (lysE)和 N-乙酰二氨基戊烷 (act)形成的基因进行靶向处理。这用于创建谷氨酸棒杆菌菌株 DAP-Xyl1 icd(GTG) Peftu fbp Psod tkt Δact ΔlysE。新型生产菌株 DAP-Xyl2 的产物产量提高了 54%,达到 233 mmol mol(-1),木糖基质上的生产力提高了 100%,达到 1 mmol g(-1) h(-1)。在分批补料过程中,该菌株从木糖中获得了 103 g L(-1)的二氨基戊烷,产物得率为 32%。木糖的利用是目前最相关的代谢工程课题之一。在这方面,目前的工作是谷氨酸棒杆菌工业菌株工程的一个里程碑。请参阅 Hiroshi Shimizu 的相关评论,DOI: 10.1002/biot.201300097。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验