Suppr超能文献

组蛋白 H3 修饰与蛋白解读器之间的动态相互作用:“组蛋白语言”的新证据

Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language".

机构信息

Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Chembiochem. 2011 Jan 24;12(2):299-307. doi: 10.1002/cbic.201000474. Epub 2010 Oct 29.

Abstract

Histone proteins organize DNA into dynamic chromatin structures and regulate processes such as transcription, repair, and replication. Control of chromatin function and structure is mediated in part by reversible post-translational modifications (PTMs) on histones. The most N-terminal region of histone H3 contains a high density of modifiable residues. Here we focus on the dynamic interplay between histone modification states on the H3 N terminus and the binding modules that recognize these states. Specifically, we discuss the effect of auxiliary modifications to H3K4unmod/me3 binding modules (specifically H3R2 methylation, H3T3 phosphorylation, and H3T6 phosphorylation). Emerging evidence suggests that histone PTMs behave less like a strict "code", but more like a "language", which better illustrates the importance of context. Using androgen-receptor-mediated gene activation as an example, we propose a model of how the combinatorial natures of PTMs on the H3 N terminus and the complexes that recognize these epigenetic modifications control gene expression.

摘要

组蛋白将 DNA 组织成动态染色质结构,并调节转录、修复和复制等过程。染色质功能和结构的控制部分是通过组蛋白上的可逆翻译后修饰 (PTMs) 介导的。组蛋白 H3 的最 N 端区域含有高密度的可修饰残基。在这里,我们重点关注 H3 N 端组蛋白修饰状态与识别这些状态的结合模块之间的动态相互作用。具体来说,我们讨论了辅助修饰对 H3K4unmod/me3 结合模块(特别是 H3R2 甲基化、H3T3 磷酸化和 H3T6 磷酸化)的影响。新出现的证据表明,组蛋白 PTM 表现得更像是一种“语言”,而不是一种严格的“密码”,这更好地说明了上下文的重要性。我们以雄激素受体介导的基因激活为例,提出了一个模型,说明 H3 N 端 PTM 的组合性质以及识别这些表观遗传修饰的复合物如何控制基因表达。

相似文献

1
Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language".
Chembiochem. 2011 Jan 24;12(2):299-307. doi: 10.1002/cbic.201000474. Epub 2010 Oct 29.
2
Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey.
Acc Chem Res. 2021 Oct 5;54(19):3734-3747. doi: 10.1021/acs.accounts.1c00463. Epub 2021 Sep 23.
3
Interpreting the language of histone and DNA modifications.
Biochim Biophys Acta. 2014 Aug;1839(8):627-43. doi: 10.1016/j.bbagrm.2014.03.001. Epub 2014 Mar 12.
4
Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation.
Mol Cell Proteomics. 2016 Aug;15(8):2715-29. doi: 10.1074/mcp.M115.054460. Epub 2016 Jun 14.
5
Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms.
J Biol Chem. 2018 Aug 10;293(32):12360-12377. doi: 10.1074/jbc.RA118.001845. Epub 2018 Jun 19.
6
Marking histone H3 variants: how, when and why?
Trends Biochem Sci. 2007 Sep;32(9):425-33. doi: 10.1016/j.tibs.2007.08.004. Epub 2007 Aug 30.
7
Distinct Histone Post-translational Modifications during Gametocyte Development.
J Proteome Res. 2022 Aug 5;21(8):1857-1867. doi: 10.1021/acs.jproteome.2c00108. Epub 2022 Jun 30.
8
Combinatorial profiling of chromatin binding modules reveals multisite discrimination.
Nat Chem Biol. 2010 Apr;6(4):283-90. doi: 10.1038/nchembio.319. Epub 2010 Feb 28.
9
Identification of novel post-translational modifications in linker histones from chicken erythrocytes.
J Proteomics. 2015 Jan 15;113:162-77. doi: 10.1016/j.jprot.2014.10.004. Epub 2014 Oct 14.
10
A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.
Biochem Cell Biol. 2016 Feb;94(1):33-42. doi: 10.1139/bcb-2015-0031. Epub 2015 Jun 3.

引用本文的文献

2
3
HISTome2: a database of histone proteins, modifiers for multiple organisms and epidrugs.
Epigenetics Chromatin. 2020 Aug 3;13(1):31. doi: 10.1186/s13072-020-00354-8.
4
Androgen-induced Epigenetic Profiles of Polycomb and Trithorax Genes in Prostate Cancer Cells.
Anticancer Res. 2020 May;40(5):2559-2565. doi: 10.21873/anticanres.14226.
5
Intrinsically disordered proteins in the nucleus of human cells.
Biochem Biophys Rep. 2015 Mar 24;1:33-51. doi: 10.1016/j.bbrep.2015.03.003. eCollection 2015 May.
6
Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.
Methods Enzymol. 2017;586:359-378. doi: 10.1016/bs.mie.2016.10.021. Epub 2017 Jan 6.
7
A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks.
Cold Spring Harb Perspect Biol. 2016 Mar 1;8(3):a018754. doi: 10.1101/cshperspect.a018754.
8
Reading the Combinatorial Histone Language.
ACS Chem Biol. 2016 Mar 18;11(3):564-74. doi: 10.1021/acschembio.5b00864. Epub 2015 Dec 21.
9
Reading between the Lines: "ADD"-ing Histone and DNA Methylation Marks toward a New Epigenetic "Sum".
ACS Chem Biol. 2016 Mar 18;11(3):554-63. doi: 10.1021/acschembio.5b00830. Epub 2015 Dec 7.
10

本文引用的文献

1
Structural basis for methylarginine-dependent recognition of Aubergine by Tudor.
Genes Dev. 2010 Sep 1;24(17):1876-81. doi: 10.1101/gad.1956010. Epub 2010 Aug 16.
2
A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly.
Genes Dev. 2010 Apr 1;24(7):647-52. doi: 10.1101/gad.1881710. Epub 2010 Mar 18.
3
Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4.
Nature. 2010 Apr 1;464(7289):792-6. doi: 10.1038/nature08839. Epub 2010 Mar 14.
4
Combinatorial profiling of chromatin binding modules reveals multisite discrimination.
Nat Chem Biol. 2010 Apr;6(4):283-90. doi: 10.1038/nchembio.319. Epub 2010 Feb 28.
5
Structure and functional characterization of the atypical human kinase haspin.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20198-203. doi: 10.1073/pnas.0901989106. Epub 2009 Nov 16.
6
Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain.
EMBO Rep. 2009 Nov;10(11):1235-41. doi: 10.1038/embor.2009.218. Epub 2009 Oct 16.
7
Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications.
Biochem J. 2009 Sep 25;423(2):179-87. doi: 10.1042/BJ20090870.
8
WDR5, a complexed protein.
Nat Struct Mol Biol. 2009 Jul;16(7):678-80. doi: 10.1038/nsmb0709-678.
9
Mechanisms of transcriptional repression by histone lysine methylation.
Int J Dev Biol. 2009;53(2-3):335-54. doi: 10.1387/ijdb.082717ph.
10
The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development.
Arch Immunol Ther Exp (Warsz). 2009 Mar-Apr;57(2):105-16. doi: 10.1007/s00005-009-0011-3. Epub 2009 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验