Suppr超能文献

XCSc:一种基于扩展分类器系统的聚类新方法。

XCSc: a novel approach to clustering with extended classifier system.

机构信息

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China.

出版信息

Int J Neural Syst. 2011 Feb;21(1):79-93. doi: 10.1142/S0129065711002675.

Abstract

In this paper, we propose a novel approach to clustering noisy and complex data sets based on the eXtend Classifier Systems (XCS). The proposed approach, termed XCSc, has three main processes: (a) a learning process to evolve the rule population, (b) a rule compacting process to remove redundant rules after the learning process, and (c) a rule merging process to deal with the overlapping rules that commonly occur between the clusters. In the first process, we have modified the clustering mechanisms of the current available XCS and developed a new accelerate learning method to improve the quality of the evolved rule population. In the second process, an effective rule compacting algorithm is utilized. The rule merging process is based on our newly proposed agglomerative hierarchical rule merging algorithm, which comprises the following steps: (i) all the generated rules are modeled by a graph, with each rule representing a node; (ii) the vertices in the graph are merged to form a number of sub-graphs (i.e. rule clusters) under some pre-defined criteria, which generates the final rule set to represent the clusters; (iii) each data is re-checked and assigned to a cluster that it belongs to, guided by the final rule set. In our experiments, we compared the proposed XCSc with CHAMELEON, a benchmark algorithm well known for its excellent performance, on a number of challenging data sets. The results show that the proposed approach outperforms CHAMELEON in the successful rate, and also demonstrates good stability.

摘要

在本文中,我们提出了一种新的方法,基于可扩展分类器系统(XCS)对噪声和复杂数据集进行聚类。所提出的方法称为 XCSc,它有三个主要过程:(a)一个学习过程,用于进化规则群体;(b)一个规则压缩过程,用于在学习过程之后去除冗余规则;(c)一个规则合并过程,用于处理聚类之间常见的重叠规则。在第一个过程中,我们修改了当前可用的 XCS 的聚类机制,并开发了一种新的加速学习方法,以提高进化规则群体的质量。在第二个过程中,我们使用了一种有效的规则压缩算法。规则合并过程基于我们新提出的聚合层次规则合并算法,该算法包括以下步骤:(i)所有生成的规则都由图表示,其中每个规则表示一个节点;(ii)根据一些预定义的标准,将图中的顶点合并形成若干个子图(即规则簇),从而生成最终的规则集来表示簇;(iii)根据最终的规则集,重新检查每个数据并将其分配到它所属的簇中。在我们的实验中,我们将提出的 XCSc 与 CHAMELEON 进行了比较,CHAMELEON 是一种以性能优异而闻名的基准算法。结果表明,所提出的方法在成功率方面优于 CHAMELEON,并且还表现出良好的稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验