Suppr超能文献

基于期望最大化聚类的层次化前缀树分组分类算法

Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

作者信息

Bi Xia-An, Zhao Junxia

机构信息

College of Mathematics and Computer Science, Hunan Normal University, Changsha, P.R. China.

出版信息

PLoS One. 2017 Jul 13;12(7):e0181049. doi: 10.1371/journal.pone.0181049. eCollection 2017.

Abstract

With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

摘要

随着计算机网络带宽的发展,迫切需要能够处理大规模规则集的分组分类算法。在现有算法中,基于层次化前缀树的分组分类算法研究因其广泛的实际应用而成为一个重要的分组分类研究分支。尽管层次化前缀树有利于节省大量存储空间,但它存在诸如回溯和空节点等缺点。本文提出了一种新的分组分类算法,即基于期望最大化聚类的层次化前缀树算法(HTEMC)。首先,本文采用形式化方法,通过将规则和数据包映射到二维空间来处理分组分类问题。其次,本文使用期望最大化算法根据规则的聚合特征对规则进行聚类,从而形成多样化的簇。第三,本文基于期望最大化聚类的结果提出了一种层次化前缀树。最后,本文分别进行了模拟实验和实际环境实验,将我们算法的性能与其他典型算法进行比较,并分析实验结果。我们算法中的层次化前缀树结构不仅采用前缀树路径压缩来消除回溯,还解决了前缀树更新效率低的问题,大大提高了算法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2f7/5509293/d116e6d1e254/pone.0181049.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验