Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Langmuir. 2011 Mar 1;27(5):1610-7. doi: 10.1021/la104731w. Epub 2011 Jan 18.
Photochemical control of vesicle disintegration and reformation in aqueous solution was examined using a mixture of 4-butylazobenzene-4'-(oxyethyl)trimethylammonium bromide (AZTMA) as the photoresponsive cationic surfactant and sodium dodecylbenzenesulfonate (SDBS) as the anionic surfactant. Spontaneous vesicle formation was found in a wide-ranging composition of the trans-AZTMA/SDBS system. AZTMA molecules constituting vesicles underwent reversible trans-cis photoisomerization when irradiated with ultraviolet and visible light. Transmission electron microscopy observations using the freeze-fracture technique (FF-TEM) showed that UV light irradiation caused the vesicles to disintegrate into coarse aggregates and visible light irradiation stimulated the reformation of vesicles (normal control). A detailed investigation of the phase state and the effects of UV and visible light irradiation on the AZTMA/SDBS system with the use of electroconductivity, dynamic/static light scattering, and surface tension measurements and FF-TEM observations revealed that in the AZTMA-rich composition (AZTMA/SDBS 9:1) a micellar solution before light irradiation became a vesicular solution after UV light irradiation and visible light irradiation allowed the return to a micellar solution (reverse control). Thus, we could photochemically control the disintegration (normal control) and reformation (reverse control) of vesicles in the same system.
采用 4-正丁基偶氮苯-4'-(乙氧基)三甲基氯化铵(AZTMA)作为光响应阳离子表面活性剂和十二烷基苯磺酸钠(SDBS)作为阴离子表面活性剂,研究了水溶液中囊泡的光化学分解和再形成的控制。在反式-AZTMA/SDBS 体系的广泛组成范围内发现了自发囊泡的形成。当用紫外线和可见光照射时,构成囊泡的 AZTMA 分子经历可逆的反式-顺式光异构化。使用冷冻断裂技术(FF-TEM)的透射电子显微镜观察表明,紫外光照射导致囊泡分解成粗聚集体,可见光照射刺激囊泡的再形成(正常对照)。使用电导率、动态/静态光散射和表面张力测量以及 FF-TEM 观察对 AZTMA/SDBS 体系的相态和紫外光和可见光照射的影响进行了详细研究,结果表明,在 AZTMA 丰富的组成(AZTMA/SDBS 9:1)中,光照射前的胶束溶液在紫外光照射后变成囊泡溶液,而可见光照射允许其返回到胶束溶液(反向控制)。因此,我们可以在同一体系中光化学控制囊泡的分解(正常控制)和再形成(反向控制)。