Suppr超能文献

在涉及阿尔茨海默病患者的临床试验中,我们应该如何处理缺失数据?

How should we deal with missing data in clinical trials involving Alzheimer's disease patients?

机构信息

INSERM U558 - University of Toulouse III, F-31073, France.

出版信息

Curr Alzheimer Res. 2011 Jun;8(4):421-33. doi: 10.2174/156720511795745339.

Abstract

Missing data are frequent in Alzheimer's disease (AD) trials due to the age of participants and the nature of the disease. This can lead to bias and decreased statistical power. We assessed the level and causes of missing data in a 2-year randomised trial of an AD patient management program (PLASA study), and conducted sensitivity analyses on the primary endpoint (functional decline), using various methods for handling missing data: complete case, LOCF, Z-score LOCF, longitudinal mixed effects model, multiple imputation. By 2 years, 32% of the 1131 subjects had dropped out, with the commonest reasons being death (28% of dropouts) and refusal (22%). Baseline cognitive and functional status were predictive of dropout. All sensitivity analyses led to the same conclusion: no effect of the intervention on the rate of functional decline. All analyses demonstrated significant functional decline over time in both groups, but the magnitude of decline and between-group (intervention versus usual care) differences varied across methods. In particular, the LOCF analysis substantially underestimated 2-year decline in both groups compared to other methods. Our results suggest that data were not "missing completely at random", meaning that the complete case method was unsuitable. The LOCF method was also unsuitable since it assumes no decline after dropout. Methods based on the more plausible "missing at random" hypothesis (multiple imputation, longitudinal mixed effects models, z-score LOCF) appeared more appropriate. This work highlights the importance of considering the validity of the underlying hypotheses of methods used for handling missing data in AD trials.

摘要

在阿尔茨海默病(AD)试验中,由于参与者的年龄和疾病的性质,经常会出现数据缺失的情况。这可能会导致偏差和统计效力降低。我们评估了一项为期 2 年的 AD 患者管理计划(PLASA 研究)随机试验中缺失数据的水平和原因,并对主要终点(功能下降)进行了敏感性分析,使用了各种处理缺失数据的方法:完全案例、末次观察结转(LOCF)、Z 分数 LOCF、纵向混合效应模型、多重插补。到 2 年时,1131 名受试者中有 32%退出,最常见的原因是死亡(28%的退出者)和拒绝(22%)。基线认知和功能状态是退出的预测因素。所有敏感性分析都得出了相同的结论:干预对功能下降率没有影响。所有分析都表明,两组在随访期间都有明显的功能下降,但下降幅度和组间(干预与常规护理)差异在不同方法之间有所不同。特别是,与其他方法相比,LOCF 分析大大低估了两组的 2 年下降幅度。我们的结果表明,数据并非“完全随机缺失”,这意味着完全案例法不适用。LOCF 方法也不适用,因为它假设在退出后没有下降。基于更合理的“随机缺失”假设(多重插补、纵向混合效应模型、Z 分数 LOCF)的方法似乎更合适。这项工作强调了在 AD 试验中处理缺失数据的方法中,考虑所使用方法的基本假设的有效性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验