Suppr超能文献

枯草芽孢杆菌gnt操纵子分解代谢物阻遏相关顺式序列的确定;芽孢杆菌属中分解代谢物阻遏共有序列的意义。

Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.

作者信息

Miwa Y, Fujita Y

机构信息

Department of Biotechnology, Faculty of Engineering, Fukuyama University, Japan.

出版信息

Nucleic Acids Res. 1990 Dec 11;18(23):7049-53. doi: 10.1093/nar/18.23.7049.

Abstract

The mechanism underlying catabolite repression in Bacillus species remains unsolved. The gluconate (gnt) operon of Bacillus subtilis is one of the catabolic operons which is under catabolite repression. To identify the cis sequence involved in catabolite repression of the gnt operon, we performed deletion analysis of a DNA fragment carrying the gnt promoter and the gntR gene, which had been cloned into the promoter probe vector, pWP19. Deletion of the region upstream of the gnt promoter did not affect catabolite repression. Further deletion analysis of the gnt promoter and gntR coding region was carried out after restoration of promoter activity through the insertion of internal constitutive promoters of the gnt operon before the gntR gene (P2 and P3). These deletions revealed that the cis sequence involved in catabolite repression of the gnt operon is located between nucleotide positions +137 and +148. This DNA segment contains a sequence, ATTGAAAG, which may be implicated as a consensus sequence involved in catabolite repression in the genus Bacillus.

摘要

芽孢杆菌属中分解代谢物阻遏的潜在机制仍未解决。枯草芽孢杆菌的葡萄糖酸盐(gnt)操纵子是受分解代谢物阻遏的分解代谢操纵子之一。为了鉴定参与gnt操纵子分解代谢物阻遏的顺式序列,我们对携带gnt启动子和gntR基因的DNA片段进行了缺失分析,该片段已被克隆到启动子探针载体pWP19中。gnt启动子上游区域的缺失不影响分解代谢物阻遏。在通过在gntR基因之前插入gnt操纵子的内部组成型启动子(P2和P3)恢复启动子活性后,对gnt启动子和gntR编码区域进行了进一步的缺失分析。这些缺失表明,参与gnt操纵子分解代谢物阻遏的顺式序列位于核苷酸位置+137和+148之间。该DNA片段包含一个序列ATTGAAAG,它可能被认为是芽孢杆菌属中参与分解代谢物阻遏的共有序列。

相似文献

2
Promoter-independent catabolite repression of the Bacillus subtilis gnt operon.
J Biochem. 1993 Jun;113(6):665-71. doi: 10.1093/oxfordjournals.jbchem.a124100.
3
The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
Proc Natl Acad Sci U S A. 1987 Jul;84(13):4524-8. doi: 10.1073/pnas.84.13.4524.
4
Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
Mol Microbiol. 1997 Mar;23(6):1203-13. doi: 10.1046/j.1365-2958.1997.2921662.x.
5
Nucleotide sequence and features of the Bacillus licheniformis gnt operon.
DNA Res. 1994;1(4):157-62. doi: 10.1093/dnares/1.4.157.
6
Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon.
Nucleic Acids Res. 1986 Feb 11;14(3):1237-52. doi: 10.1093/nar/14.3.1237.
7
Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
J Gen Appl Microbiol. 2017 Jan 25;62(6):277-285. doi: 10.2323/jgam.2016.05.004. Epub 2016 Nov 8.

引用本文的文献

1
Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
J Bacteriol. 2005 Nov;187(22):7826-39. doi: 10.1128/JB.187.22.7826-7839.2005.
2
Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis.
Nucleic Acids Res. 2000 Mar 1;28(5):1206-10. doi: 10.1093/nar/28.5.1206.
4
CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
J Bacteriol. 1998 Feb;180(3):491-7. doi: 10.1128/JB.180.3.491-497.1998.
5
Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site.
Nucleic Acids Res. 1997 Sep 1;25(17):3490-6. doi: 10.1093/nar/25.17.3490.
7
Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein.
J Bacteriol. 1994 Jan;176(2):511-3. doi: 10.1128/jb.176.2.511-513.1994.
9
Glucitol induction in Bacillus subtilis is mediated by a regulatory factor, GutR.
J Bacteriol. 1994 Jun;176(11):3321-7. doi: 10.1128/jb.176.11.3321-3327.1994.
10
Transcriptional regulation of the Bacillus subtilis glucitol dehydrogenase gene.
J Bacteriol. 1994 Jun;176(11):3314-20. doi: 10.1128/jb.176.11.3314-3320.1994.

本文引用的文献

1
An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences.
Nucleic Acids Res. 1982 May 11;10(9):2951-61. doi: 10.1093/nar/10.9.2951.
2
3
Cyclic AMP receptor protein: role in transcription activation.
Science. 1984 May 25;224(4651):831-8. doi: 10.1126/science.6372090.
4
Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis.
Biochim Biophys Acta. 1984 Mar 22;798(1):88-95. doi: 10.1016/0304-4165(84)90014-x.
6
Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation.
J Appl Bacteriol. 1970 Mar;33(1):207-19. doi: 10.1111/j.1365-2672.1970.tb05245.x.
7
Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium.
Biochem Biophys Res Commun. 1973 May 15;52(2):365-72. doi: 10.1016/0006-291x(73)90720-1.
8
Repair of ultraviolet-induced DNA damage in the subcellular systems of Bacillus subtilis.
Mutat Res. 1973 Nov;20(2):159-73. doi: 10.1016/0027-5107(73)90186-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验