University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
ACS Nano. 2011 Feb 22;5(2):1179-89. doi: 10.1021/nn103149c. Epub 2011 Jan 19.
We demonstrate the feasibility of fabricating heterojunctions of semiconductors with high mismatches in lattice constant and coefficient of thermal expansion by employing nanomembrane bonding. We investigate the structure of and electrical transport across the interface of a Si/Ge bilayer formed by direct, low-temperature hydrophobic bonding of a 200 nm thick monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high quality, with an interfacial region of ∼1 nm. No fracture or delamination is observed for temperature changes greater than 350 °C, despite the approximately 2:1 ratio of thermal-expansion coefficients. Both the Si and the Ge maintain a high degree of crystallinity. The junction is highly conductive. The nonlinear transport behavior is fit with a tunneling model, and the bonding behavior is explained with nanomembrane mechanics.
我们通过采用纳米膜键合技术,展示了制造晶格常数和热膨胀系数存在高度失配的半导体异质结的可行性。我们研究了由厚度为 200nm 的单晶 Si(001)膜直接低温疏水性键合到体块 Ge(001)晶片形成的 Si/Ge 双层的结构和界面处的电子输运。该膜键合具有极高的质量,界面区约为 1nm。尽管热膨胀系数的比值约为 2:1,但在温度变化大于 350°C 时,仍未观察到断裂或分层。Si 和 Ge 都保持了高度的结晶度。结是高导电的。非线性输运行为符合隧道模型,键合行为则用纳米膜力学来解释。