Kim Kwangeun
School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea.
Materials (Basel). 2024 Dec 13;17(24):6099. doi: 10.3390/ma17246099.
The energy band alignment of a stacked Si/GaN heterostructure was investigated using X-ray photoelectron spectroscopy (XPS) depth profiling, highlighting the influence of the amorphous interface region on the electronic properties. The crystalline Si/GaN pn heterostructure was formed by stacking a Si nanomembrane onto a GaN epi-substrate. The amorphous layer formed at the stacked Si/GaN interface altered the energy band of the stacked heterostructure and affected the injection of charge carriers across the junction interface region. This study revealed the interfacial upward energy band bending of the stacked Si/GaN heterostructure with surface potentials of 0.99 eV for GaN and 1.14 eV for Si, attributed to the formation of the amorphous interface. These findings challenge the conventional electron affinity model by accounting for interfacial bonding effects. Electrical measurements of the stacked Si/GaN pn heterostructure diode exhibited a rectifying behavior, consistent with the XPS-determined energy band alignment. The diode outperformed early design with a low leakage current density of 5 × 10 A/cm and a small ideality factor of 1.22. This work underscores the critical role of the amorphous interface in determining energy band alignment and provides a robust methodology for optimizing the electronic performance of stacked heterostructures. The XPS-based approach can be extended to analyze and develop multi-layered bipolar devices.
利用X射线光电子能谱(XPS)深度剖析研究了堆叠式Si/GaN异质结构的能带排列,突出了非晶界面区域对电子特性的影响。通过将Si纳米膜堆叠在GaN外延衬底上形成晶体Si/GaN pn异质结构。在堆叠的Si/GaN界面处形成的非晶层改变了堆叠异质结构的能带,并影响了电荷载流子在结界面区域的注入。本研究揭示了堆叠式Si/GaN异质结构的界面向上能带弯曲,GaN的表面电势为0.99 eV,Si的表面电势为1.14 eV,这归因于非晶界面的形成。这些发现通过考虑界面键合效应挑战了传统的电子亲和能模型。堆叠式Si/GaN pn异质结构二极管的电学测量表现出整流行为,与XPS确定的能带排列一致。该二极管性能优于早期设计,漏电流密度低至5×10 A/cm,理想因子小至1.22。这项工作强调了非晶界面在确定能带排列中的关键作用,并为优化堆叠异质结构的电子性能提供了一种可靠的方法。基于XPS的方法可扩展用于分析和开发多层双极器件。