Suppr超能文献

暗场共聚焦显微镜检测人肺细胞对纳米颗粒的内化。

Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells.

机构信息

Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.

出版信息

Part Fibre Toxicol. 2011 Jan 19;8(1):2. doi: 10.1186/1743-8977-8-2.

Abstract

BACKGROUND

Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP). Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm). Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM) for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane.

RESULTS

Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal) and scattered transmitted light (Darkfield) along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependent internalization process.

CONCLUSIONS

DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron density. DF-CLSM is especially well suited to the task of establishing the spatial localization of nanoparticles within cells, a critical topic in nanotoxicology. This technique has advantages to 2D darkfield microscopy as it visualizes nanoparticles in 3D using confocal microscopy. Use of this technique should aid toxicological studies related to observation of NP interactions with biological endpoints at cellular and subcellular levels.

摘要

背景

对环境中纳米材料健康影响的担忧,促使人们需要开发能够检测纳米颗粒(NP)生物相互作用的显微镜方法。不幸的是,NP 超出了传统光显微镜的分辨率极限(~200nm)。荧光和电子显微镜技术常用于检测 NP 与生物基质的相互作用,但它们存在一些缺点,限制了它们在 NP 毒理学研究中的应用。EM 既费力又耗时,而荧光会导致样品光漂白,且具有尺寸分辨率限制。此外,许多相关颗粒缺乏固有荧光,因此无法以这种方式检测。为了克服这些限制,我们评估了暗场和共焦激光扫描显微镜(DF-CLSM)的新组合在高效检测人肺细胞中 NP 方面的潜力。DF-CLSM 方法利用暗场显微镜的对比度增强来检测低于 200nm 衍射极限的物体,其依据是它们的光散射特性,并将其与共焦显微镜的功能相结合,以在 z 平面上解析物体。

结果

使用荧光聚苯乙烯珠验证了 DF-CLSM 方法的有效性,结果表明,沿 X、Y 和 Z 轴,粒子荧光(共焦)和散射透射光(暗场)的空间共定位。DF-CLSM 成像能够检测并提供暴露于 BEAS 2B 细胞的 27nmTiO2 颗粒相对于染色核的合理空间位置。对颗粒与细胞核接近程度的统计分析表明,5min 和 2hr 颗粒暴露之间存在显著差异,这表明存在时间依赖性内化过程。

结论

DF-CLSM 显微镜是当前传统光和电子显微镜方法的替代方法,它不依赖于粒子荧光或电子密度对比度。DF-CLSM 特别适合于确定细胞内纳米颗粒的空间定位,这是纳米毒理学的一个关键课题。与 2D 暗场显微镜相比,该技术具有优势,因为它使用共焦显微镜以 3D 形式可视化纳米颗粒。该技术的应用应有助于与细胞和亚细胞水平的生物终点观察 NP 相互作用相关的毒理学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095f/3033333/804fb9468ce6/1743-8977-8-2-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验