Perrigue Patrick M, Murray Richard A, Mielcarek Angelika, Henschke Agata, Moya Sergio E
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940 Leioa, Spain.
Pharmaceutics. 2021 May 21;13(6):770. doi: 10.3390/pharmaceutics13060770.
Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.
纳米制剂相对于传统药物递送具有多种优势,可提高药物的溶解度、生物相容性和生物利用度。纳米载体可以设计成带有靶向配体,以到达特定组织或细胞,从而减少有效载荷的副作用。全身给药后,纳米载体通常必须通过纳米载体降解来递送包封的药物。过早降解或纳米载体涂层的损失可能会阻止药物递送至靶组织。尽管纳米载体在生物环境中的稳定性和降解很重要,但文献中对此研究甚少。在此,我们综述了追踪纳米载体命运的技术,重点关注纳米载体在细胞内和体内的降解以及药物释放。在细胞内,我们将讨论不同的荧光技术:共聚焦激光扫描显微镜、荧光相关光谱、寿命成像、流式细胞术等。我们还将共聚焦拉曼显微镜视为一种无标记技术,用于追踪纳米载体和药物的共定位。在体内,我们将考虑使用荧光和核成像来追踪纳米载体。正电子发射断层扫描和单光子发射计算机断层扫描用于定量评估纳米载体和有效载荷的生物分布。还讨论了对纳米载体和有效载荷进行双重放射性标记以追踪载体降解以及有效载荷在体内递送效果的策略。