Suppr超能文献

轮状病毒 VP2 核心壳区对病毒聚合酶的激活至关重要。

Rotavirus VP2 core shell regions critical for viral polymerase activation.

机构信息

Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6311, Bethesda, MD 20892-8026, USA.

出版信息

J Virol. 2011 Apr;85(7):3095-105. doi: 10.1128/JVI.02360-10. Epub 2011 Jan 19.

Abstract

The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 requirement effectively couples packaging with genome replication and ensures that VP1 makes dsRNA only within an assembling previrion particle. However, the mechanism by which the rotavirus core shell protein activates the viral polymerase remains very poorly understood. In the current study, we sought to elucidate VP2 regions critical for VP1-mediated in vitro dsRNA synthesis. By comparing the functions of proteins from several different rotaviruses, we found that polymerase activation by the core shell protein is specific. Through truncation and chimera mutagenesis, we demonstrate that the VP2 amino terminus, which forms a decameric, internal hub underneath each 5-fold axis, plays an important but nonspecific role in VP1 activation. Our results indicate that the VP2 residues correlating with polymerase activation specificity are located on the inner face of the core shell, distinct from the amino terminus. Based on these findings, we predict that several regions of VP2 engage the polymerase during the concerted processes of rotavirus core assembly and genome replication.

摘要

三层二十面体轮状病毒颗粒的最内层 VP2 核心壳围绕着病毒基因组和 RNA 加工酶,包括 RNA 依赖性 RNA 聚合酶(VP1)。除了将 VP1 锚定在核心内,VP2 也是一种必不可少的辅助因子,它可以触发聚合酶使用包装的正链 RNA 模板启动双链 RNA(dsRNA)合成。VP2 的需求有效地将包装与基因组复制偶联起来,并确保 VP1 仅在组装前病毒粒子内合成 dsRNA。然而,轮状病毒核心壳蛋白激活病毒聚合酶的机制仍知之甚少。在本研究中,我们试图阐明 VP2 区域对 VP1 介导的体外 dsRNA 合成至关重要。通过比较几种不同轮状病毒的蛋白质功能,我们发现核心壳蛋白对聚合酶的激活具有特异性。通过截短和嵌合突变,我们证明了形成每个五重轴下方的十聚体内部中心的 VP2 氨基末端在 VP1 激活中起着重要但非特异性的作用。我们的结果表明,与聚合酶激活特异性相关的 VP2 残基位于核心壳的内表面,与氨基末端不同。基于这些发现,我们预测在轮状病毒核心组装和基因组复制的协同过程中,VP2 的几个区域与聚合酶结合。

相似文献

1
Rotavirus VP2 core shell regions critical for viral polymerase activation.
J Virol. 2011 Apr;85(7):3095-105. doi: 10.1128/JVI.02360-10. Epub 2011 Jan 19.
2
Double-Stranded RNA Synthesis by Rotavirus Polymerase Mutants with Lesions at Core Shell Contact Sites.
J Virol. 2019 Sep 30;93(20). doi: 10.1128/JVI.01049-19. Print 2019 Oct 15.
3
Rotavirus core shell subdomains involved in polymerase encapsidation into virus-like particles.
J Gen Virol. 2013 Aug;94(Pt 8):1818-1826. doi: 10.1099/vir.0.052951-0. Epub 2013 Apr 17.
5
Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome.
J Virol. 1997 Dec;71(12):9618-26. doi: 10.1128/JVI.71.12.9618-9626.1997.
6
Rotavirus NSP2 interferes with the core lattice protein VP2 in initiation of minus-strand synthesis.
Virology. 2003 Aug 15;313(1):261-73. doi: 10.1016/s0042-6822(03)00302-7.
8
The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3.
J Virol. 1998 Jan;72(1):201-8. doi: 10.1128/JVI.72.1.201-208.1998.
9
In vitro particle-associated uridyltransferase activity of the rotavirus VP1 polymerase.
Virology. 2022 Dec;577:24-31. doi: 10.1016/j.virol.2022.09.015. Epub 2022 Oct 11.
10
Rotavirus core shell protein sites that regulate intra-particle polymerase activity.
J Virol. 2023 Oct 31;97(10):e0086023. doi: 10.1128/jvi.00860-23. Epub 2023 Oct 13.

引用本文的文献

1
Rotavirus Infections: Pathophysiology, Symptoms, and Vaccination.
Pathogens. 2025 May 14;14(5):480. doi: 10.3390/pathogens14050480.
2
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
3
Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly.
Viruses. 2024 May 21;16(6):814. doi: 10.3390/v16060814.
4
Generation of single-round infectious rotavirus with a mutation in the intermediate capsid protein VP6.
J Virol. 2024 Jul 23;98(7):e0076224. doi: 10.1128/jvi.00762-24. Epub 2024 Jun 5.
5
Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro.
Viruses. 2023 Aug 16;15(8):1750. doi: 10.3390/v15081750.
6
The structure of a 12-segmented dsRNA reovirus: New insights into capsid stabilization and organization.
PLoS Pathog. 2023 Apr 21;19(4):e1011341. doi: 10.1371/journal.ppat.1011341. eCollection 2023 Apr.
7
In vitro particle-associated uridyltransferase activity of the rotavirus VP1 polymerase.
Virology. 2022 Dec;577:24-31. doi: 10.1016/j.virol.2022.09.015. Epub 2022 Oct 11.
9
Viroplasms: Assembly and Functions of Rotavirus Replication Factories.
Viruses. 2021 Jul 12;13(7):1349. doi: 10.3390/v13071349.

本文引用的文献

1
Complete genome sequence analysis of candidate human rotavirus vaccine strains RV3 and 116E.
Virology. 2010 Sep 15;405(1):201-13. doi: 10.1016/j.virol.2010.06.005. Epub 2010 Jun 26.
2
Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome.
J Biol Chem. 2010 Jun 11;285(24):18123-8. doi: 10.1074/jbc.R110.117671. Epub 2010 Mar 29.
3
X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution.
J Mol Biol. 2010 Mar 26;397(2):587-99. doi: 10.1016/j.jmb.2010.01.055. Epub 2010 Feb 1.
4
The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases.
Curr Opin Struct Biol. 2009 Dec;19(6):775-82. doi: 10.1016/j.sbi.2009.10.007. Epub 2009 Nov 14.
6
Rotavirus architecture at subnanometer resolution.
J Virol. 2009 Feb;83(4):1754-66. doi: 10.1128/JVI.01855-08. Epub 2008 Nov 26.
7
Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.
Structure. 2008 Nov 12;16(11):1678-88. doi: 10.1016/j.str.2008.09.006.
8
Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1867-72. doi: 10.1073/pnas.0711623105. Epub 2008 Jan 31.
9
Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2.
J Virol. 2007 Mar;81(5):2128-37. doi: 10.1128/JVI.01494-06. Epub 2006 Dec 20.
10
Rotavirus proteins: structure and assembly.
Curr Top Microbiol Immunol. 2006;309:189-219. doi: 10.1007/3-540-30773-7_7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验