Suppr超能文献

轮状病毒内层衣壳颗粒的 X 射线晶体结构分辨率为 3.8A。

X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution.

机构信息

Laboratory of Molecular Medicine, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA.

出版信息

J Mol Biol. 2010 Mar 26;397(2):587-99. doi: 10.1016/j.jmb.2010.01.055. Epub 2010 Feb 1.

Abstract

The rotavirus inner capsid particle, known as the "double-layered particle" (DLP), is the "payload" delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter approximately 700 A) in the asymmetric unit of the P2(1)2(1)2(1) unit cell of dimensions a=740 A, b=1198 A, and c=1345 A. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 A resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 A). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T=13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two "subdomain" boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: lambda1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a "5-fold hub" that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5'-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier.

摘要

轮状病毒的内部衣壳颗粒,被称为“双层颗粒”(DLP),是病毒感染过程中进入细胞的“有效载荷”。其内外蛋白层分别由病毒蛋白(VP)2 和 VP6 组成,包裹着病毒基因组的 11 个双链 RNA(dsRNA)片段,以及大约相同数量的聚合酶分子(VP1)和加帽酶分子(VP3)。我们已经确定了牛轮状病毒 DLP 的晶体结构。在尺寸为 a=740A、b=1198A 和 c=1345A 的 P2(1)2(1)2(1)单位晶胞的不对称单位中,有一个完整的颗粒(外径约 700A)。从电子低温显微镜重建的三维结构被用作初始相位测定的分子置换模型,达到约 18.5A 的分辨率,而二十面体颗粒对称性的 60 倍冗余允许相位逐步扩展到数据的极限分辨率(3.8A)。先前由其他人确定的 VP6 三聚体的结构与外层密度非常吻合,几乎不需要调整。该层的 T=13 三角数意味着每个二十面体不对称单位有四个和三分之一的 VP6 三聚体。内层有 120 个 VP2 拷贝,因此每个二十面体不对称单位有 2 个拷贝,分别命名为 VP2A 和 VP2B。残基 101-880 折叠成一个相对较薄的主域,形状类似于逗号,其形状使得只有相当小的变形(集中在两个“亚域”边界)允许 VP2A 和 VP2B 形成一个均匀的层,在亚基边界处基本上没有间隙,除了沿着五重轴有一个适度的孔。VP2 主域与其他 dsRNA 病毒中相应壳层和同源蛋白的主域相似:正呼肠孤病毒中的 lambda1 和 orbivirus 中的 VP3。VP2A 和 VP2B 的残基 1-80 与其他四个这样的对折叠在一起,形成一个“五重轴枢纽”,沿着五重轴向 DLP 内部突出;残基 81-100 将从五重轴突出来的 10 个多肽链连接到它们相应的主域的 N 末端,聚集形成一个十聚体组装单元。五重轴枢纽似乎具有几个不同的功能。一个功能是招募一个 VP1(或 VP1-VP3 复合物)的拷贝,可能还有一段正链 RNA,作为 VP2 的十聚体组装。第二个功能是作为一个轴,dsRNA 可以缠绕在这个轴上。第三个功能是引导新生的 mRNA,由 VP1 在 DLP 内部合成,并由 VP3 的作用 5' 加帽,通过五重出口通道输出。我们提出了一种基于病毒粒子形成的已知要求以及 DLP 和 VP1 结构的轮状病毒粒子组装模型,VP1 的结构更早确定。

相似文献

1
X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution.
J Mol Biol. 2010 Mar 26;397(2):587-99. doi: 10.1016/j.jmb.2010.01.055. Epub 2010 Feb 1.
2
Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles.
J Mol Biol. 2013 Jan 9;425(1):124-32. doi: 10.1016/j.jmb.2012.10.011. Epub 2012 Oct 23.
5
Characterization of rotavirus VP2 particles.
Virology. 1994 May 15;201(1):55-65. doi: 10.1006/viro.1994.1265.
7
The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3.
J Virol. 1998 Jan;72(1):201-8. doi: 10.1128/JVI.72.1.201-208.1998.
8
In situ Structure of Rotavirus VP1 RNA-Dependent RNA Polymerase.
J Mol Biol. 2019 Aug 9;431(17):3124-3138. doi: 10.1016/j.jmb.2019.06.016. Epub 2019 Jun 21.
9
Rotavirus VP2 core shell regions critical for viral polymerase activation.
J Virol. 2011 Apr;85(7):3095-105. doi: 10.1128/JVI.02360-10. Epub 2011 Jan 19.

引用本文的文献

1
Structural determinants of rotavirus proteolytic activation.
PLoS Pathog. 2025 Aug 12;21(8):e1013063. doi: 10.1371/journal.ppat.1013063. eCollection 2025 Aug.
2
Structural determinants of rotavirus proteolytic activation.
bioRxiv. 2025 Mar 24:2025.03.24.644915. doi: 10.1101/2025.03.24.644915.
3
Towards the Development of a Minigenome Assay for Species A Rotaviruses.
Viruses. 2024 Aug 31;16(9):1396. doi: 10.3390/v16091396.
4
How structural biology has changed our understanding of icosahedral viruses.
J Virol. 2024 Oct 22;98(10):e0111123. doi: 10.1128/jvi.01111-23. Epub 2024 Sep 18.
5
Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J.
J Virol. 2024 Sep 17;98(9):e0097524. doi: 10.1128/jvi.00975-24. Epub 2024 Aug 28.
6
The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication.
mBio. 2024 Apr 10;15(4):e0049924. doi: 10.1128/mbio.00499-24. Epub 2024 Mar 12.
7
Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health.
Viruses. 2024 Jan 16;16(1):130. doi: 10.3390/v16010130.
8
Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro.
Viruses. 2023 Aug 16;15(8):1750. doi: 10.3390/v15081750.
9
Characterization of the rotavirus assembly pathway in situ using cryoelectron tomography.
Cell Host Microbe. 2023 Apr 12;31(4):604-615.e4. doi: 10.1016/j.chom.2023.03.004. Epub 2023 Mar 29.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Rotavirus architecture at subnanometer resolution.
J Virol. 2009 Feb;83(4):1754-66. doi: 10.1128/JVI.01855-08. Epub 2008 Nov 26.
3
Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.
Structure. 2008 Nov 12;16(11):1678-88. doi: 10.1016/j.str.2008.09.006.
4
Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions.
J Virol. 2008 Nov;82(22):11106-16. doi: 10.1128/JVI.01402-08. Epub 2008 Sep 10.
5
3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy.
Nature. 2008 May 15;453(7193):415-9. doi: 10.1038/nature06893. Epub 2008 Apr 30.
6
Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1867-72. doi: 10.1073/pnas.0711623105. Epub 2008 Jan 31.
7
DNA packaging and delivery machines in tailed bacteriophages.
Curr Opin Struct Biol. 2007 Apr;17(2):237-43. doi: 10.1016/j.sbi.2007.03.011. Epub 2007 Mar 28.
8
Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: implications for genome replication.
J Virol. 2006 Nov;80(21):10829-35. doi: 10.1128/JVI.01347-06. Epub 2006 Aug 23.
9
Structural determinants of rotavirus subgroup specificity mapped by cryo-electron microscopy.
J Mol Biol. 2006 Feb 10;356(1):209-21. doi: 10.1016/j.jmb.2005.11.049. Epub 2005 Dec 1.
10
The birnavirus crystal structure reveals structural relationships among icosahedral viruses.
Cell. 2005 Mar 25;120(6):761-72. doi: 10.1016/j.cell.2005.01.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验