Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA.
J Neurophysiol. 2011 Mar;105(3):1342-60. doi: 10.1152/jn.00708.2010. Epub 2011 Jan 19.
A highly effective kernel-based strategy used in machine learning is to transform the input space into a new "feature" space where nonlinear problems become linear and more readily solvable with efficient linear techniques. We propose that a similar "problem-linearization" strategy is used by the neocortical input layer 4 to reduce the difficulty of learning nonlinear relations between the afferent inputs to a cortical column and its to-be-learned upper layer outputs. The key to this strategy is the presence of broadly tuned feed-forward inhibition in layer 4: it turns local layer 4 domains into functional analogs of radial basis function networks, which are known for their universal function approximation capabilities. With the use of a computational model of layer 4 with feed-forward inhibition and Hebbian afferent connections, self-organized on natural images to closely match structural and functional properties of layer 4 of the cat primary visual cortex, we show that such layer-4-like networks have a strong intrinsic tendency to perform input transforms that automatically linearize a broad repertoire of potential nonlinear functions over the afferent inputs. This capacity for pluripotent function linearization, which is highly robust to variations in network parameters, suggests that layer 4 might contribute importantly to sensory information processing as a pluripotent function linearizer, performing such a transform of afferent inputs to a cortical column that makes it possible for neurons in the upper layers of the column to learn and perform their complex functions using primarily linear operations.
机器学习中一种非常有效的基于核的策略是将输入空间转换到一个新的“特征”空间中,在这个空间中非线性问题变得线性,并且可以使用有效的线性技术来更轻松地解决。我们提出,新皮层输入层 4 也使用了类似的“问题线性化”策略,以降低学习皮层柱的传入输入与其要学习的上层输出之间的非线性关系的难度。该策略的关键是层 4 中广泛调谐的前馈抑制的存在:它将局部层 4 区域转化为径向基函数网络的功能模拟,这些网络以其通用的函数逼近能力而闻名。我们使用具有前馈抑制和赫布式传入连接的层 4 的计算模型,通过对自然图像进行自组织,以紧密匹配猫初级视觉皮层的层 4 的结构和功能特性,我们表明,这种类似层 4 的网络具有强烈的内在倾向,可自动对广泛的潜在非线性函数进行输入变换,从而使传入输入实现线性化。这种多功能线性化的能力对网络参数的变化具有高度的鲁棒性,这表明层 4 可能作为多功能线性化器对感觉信息处理做出重要贡献,它对皮层柱的传入输入进行这样的变换,使得柱的上层神经元可以使用主要的线性操作来学习和执行其复杂功能。