Anwar M S, Blazina D, Carteret H A, Duckett S B, Halstead T K, Jones J A, Kozak C M, Taylor R J K
Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Phys Rev Lett. 2004 Jul 23;93(4):040501. doi: 10.1103/PhysRevLett.93.040501. Epub 2004 Jul 19.
Here we demonstrate how parahydrogen can be used to prepare a two-spin system in an almost pure state which is suitable for implementing nuclear magnetic resonance quantum computation. A 12 ns laser pulse is used to initiate a chemical reaction involving pure parahydrogen (the nuclear spin singlet of H2). The product, formed on the micros time scale, contains a hydrogen-derived two-spin system with an effective spin-state purity of 0.916. To achieve a comparable result by direct cooling would require an unmanageable (in the liquid state) temperature of 6.4 mK or an impractical magnetic field of 0.45 MT at room temperature. The resulting spin state has an entanglement of formation of 0.822 and cannot be described by local hidden variable models.
在此,我们展示了如何利用仲氢制备一个几乎处于纯态的双自旋系统,该系统适用于实现核磁共振量子计算。使用一个12纳秒的激光脉冲引发一个涉及纯仲氢(H₂的核自旋单重态)的化学反应。在微秒时间尺度上形成的产物包含一个氢衍生的双自旋系统,其有效自旋态纯度为0.916。要通过直接冷却获得类似结果,在液态下需要6.4毫开尔文的难以控制的温度,或者在室温下需要0.45特斯拉的不切实际的磁场。所得到的自旋态的形成纠缠度为0.822,并且不能用局域隐变量模型来描述。