Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
J Org Chem. 2011 Feb 18;76(4):1031-44. doi: 10.1021/jo102338a. Epub 2011 Jan 20.
Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)(2)/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that consists of (1) steady-state formation of a Pd(II)-amidate-alkene chelate with release of 1 equiv of pyridine and AcOH from the catalyst center, (2) alkene insertion into a Pd-N bond, (3) reversible β-hydride elimination, (4) irreversible reductive elimination of AcOH, and (5) aerobic oxidation of palladium(0) to regenerate the active trans-Pd(OAc)(2)(py)(2) catalyst. Evidence is obtained for two energetically viable pathways for the key C-N bond-forming step, featuring a pyridine-ligated and a pyridine-dissociated Pd(II) species. Analysis of natural charges and bond lengths of the alkene-insertion transition state suggest that this reaction is best described as an intramolecular nucleophilic attack of the amidate ligand on the coordinated alkene.
瓦克型氧化环化反应已经成为几十年来广泛研究的课题,但对这些反应的系统机理研究却很少有报道。本研究采用实验和 DFT 计算研究了 Pd(OAc)2/吡啶催化的烯烃分子内有氧氧化胺化反应。数据支持了一个逐步催化机理,包括:(1)催化剂中心稳定地形成 Pd(II)-酰胺-烯烃螯合物,同时释放出 1 当量的吡啶和 AcOH;(2)烯烃插入 Pd-N 键;(3)可逆的β-氢消除;(4)不可逆的 AcOH 还原消除;(5)钯(0)的有氧氧化,再生活性的反式 Pd(OAc)2(py)2 催化剂。对关键 C-N 键形成步骤的两种能量可行途径获得了证据,涉及到吡啶配位和吡啶解离的 Pd(II)物种。对烯烃插入过渡态的自然电荷和键长的分析表明,该反应最好描述为酰胺配体对配位烯烃的分子内亲核攻击。