Weber Marc, Buceta Javier
Computer Simulation and Modelling (Co.S.Mo.) Lab, Parc Científic de Barcelona, C/Baldiri Reixac 10-12, Barcelona 08028, Spain.
BMC Syst Biol. 2011 Jan 20;5:11. doi: 10.1186/1752-0509-5-11.
Cells must face the ubiquitous presence of noise at the level of signaling molecules. The latter constitutes a major challenge for the regulation of cellular functions including communication processes. In the context of prokaryotic communication, the so-called quorum sensing (QS) mechanism relies on small diffusive molecules that are produced and detected by cells. This poses the intriguing question of how bacteria cope with the fluctuations for setting up a reliable information exchange.
We present a stochastic model of gene expression that accounts for the main biochemical processes that describe the QS mechanism close to its activation threshold. Within that framework we study, both numerically and analytically, the role that diffusion plays in the regulation of the dynamics and the fluctuations of signaling molecules. In addition, we unveil the contribution of different sources of noise, intrinsic and transcriptional, in the QS mechanism.
The interplay between noisy sources and the communication process produces a repertoire of dynamics that depends on the diffusion rate. Importantly, the total noise shows a non-monotonic behavior as a function of the diffusion rate. QS systems seems to avoid values of the diffusion that maximize the total noise. These results point towards the direction that bacteria have adapted their communication mechanisms in order to improve the signal-to-noise ratio.
细胞在信号分子水平上面临着普遍存在的噪声。这对包括通信过程在内的细胞功能调节构成了重大挑战。在原核生物通信的背景下,所谓的群体感应(QS)机制依赖于细胞产生和检测的小分子扩散分子。这就提出了一个有趣的问题,即细菌如何应对波动以建立可靠的信息交换。
我们提出了一个基因表达的随机模型,该模型考虑了描述接近其激活阈值的QS机制的主要生化过程。在该框架内,我们通过数值和分析方法研究了扩散在信号分子动力学和波动调节中所起的作用。此外,我们揭示了QS机制中不同噪声源(内在噪声和转录噪声)的贡献。
噪声源与通信过程之间的相互作用产生了一系列依赖于扩散速率的动力学行为。重要的是,总噪声作为扩散速率的函数呈现出非单调行为。QS系统似乎避免了使总噪声最大化的扩散值。这些结果表明细菌已经调整了它们的通信机制以提高信噪比。