Suppr超能文献

低mRNA拷贝数系统中群体感应介导的噪声调控。

Noise regulation by quorum sensing in low mRNA copy number systems.

作者信息

Weber Marc, Buceta Javier

机构信息

Computer Simulation and Modelling (Co.S.Mo.) Lab, Parc Científic de Barcelona, C/Baldiri Reixac 10-12, Barcelona 08028, Spain.

出版信息

BMC Syst Biol. 2011 Jan 20;5:11. doi: 10.1186/1752-0509-5-11.

Abstract

BACKGROUND

Cells must face the ubiquitous presence of noise at the level of signaling molecules. The latter constitutes a major challenge for the regulation of cellular functions including communication processes. In the context of prokaryotic communication, the so-called quorum sensing (QS) mechanism relies on small diffusive molecules that are produced and detected by cells. This poses the intriguing question of how bacteria cope with the fluctuations for setting up a reliable information exchange.

RESULTS

We present a stochastic model of gene expression that accounts for the main biochemical processes that describe the QS mechanism close to its activation threshold. Within that framework we study, both numerically and analytically, the role that diffusion plays in the regulation of the dynamics and the fluctuations of signaling molecules. In addition, we unveil the contribution of different sources of noise, intrinsic and transcriptional, in the QS mechanism.

CONCLUSIONS

The interplay between noisy sources and the communication process produces a repertoire of dynamics that depends on the diffusion rate. Importantly, the total noise shows a non-monotonic behavior as a function of the diffusion rate. QS systems seems to avoid values of the diffusion that maximize the total noise. These results point towards the direction that bacteria have adapted their communication mechanisms in order to improve the signal-to-noise ratio.

摘要

背景

细胞在信号分子水平上面临着普遍存在的噪声。这对包括通信过程在内的细胞功能调节构成了重大挑战。在原核生物通信的背景下,所谓的群体感应(QS)机制依赖于细胞产生和检测的小分子扩散分子。这就提出了一个有趣的问题,即细菌如何应对波动以建立可靠的信息交换。

结果

我们提出了一个基因表达的随机模型,该模型考虑了描述接近其激活阈值的QS机制的主要生化过程。在该框架内,我们通过数值和分析方法研究了扩散在信号分子动力学和波动调节中所起的作用。此外,我们揭示了QS机制中不同噪声源(内在噪声和转录噪声)的贡献。

结论

噪声源与通信过程之间的相互作用产生了一系列依赖于扩散速率的动力学行为。重要的是,总噪声作为扩散速率的函数呈现出非单调行为。QS系统似乎避免了使总噪声最大化的扩散值。这些结果表明细菌已经调整了它们的通信机制以提高信噪比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf3/3037314/7efe8d72d9b2/1752-0509-5-11-1.jpg

相似文献

1
Noise regulation by quorum sensing in low mRNA copy number systems.
BMC Syst Biol. 2011 Jan 20;5:11. doi: 10.1186/1752-0509-5-11.
2
Noise reduction by diffusional dissipation in a minimal quorum sensing motif.
PLoS Comput Biol. 2008 Aug 29;4(8):e1000167. doi: 10.1371/journal.pcbi.1000167.
3
Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network.
J Theor Biol. 2007 Apr 21;245(4):726-36. doi: 10.1016/j.jtbi.2006.12.006. Epub 2006 Dec 12.
4
Quorum sensing: A less known mode of communication among fungi.
Microbiol Res. 2018 May;210:51-58. doi: 10.1016/j.micres.2018.03.007. Epub 2018 Mar 21.
5
Cell-cell communication by quorum sensing and dimension-reduction.
J Math Biol. 2006 Oct;53(4):672-702. doi: 10.1007/s00285-006-0024-z. Epub 2006 Aug 5.
6
Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal.
J Am Chem Soc. 2012 Mar 28;134(12):5618-26. doi: 10.1021/ja211593q. Epub 2012 Mar 16.
7
Logic of two antagonizing intra-species quorum sensing systems in bacteria.
Biosystems. 2018 Mar;165:88-98. doi: 10.1016/j.biosystems.2018.01.004. Epub 2018 Feb 5.
10
Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.
ACS Synth Biol. 2018 Apr 20;7(4):1030-1042. doi: 10.1021/acssynbio.7b00406. Epub 2018 Apr 4.

引用本文的文献

1
Physical communication pathways in bacteria: an extra layer to quorum sensing.
Biophys Rev. 2025 Mar 4;17(2):667-685. doi: 10.1007/s12551-025-01290-1. eCollection 2025 Apr.
2
Phenotypic memory in quorum sensing.
PLoS Comput Biol. 2024 Jul 8;20(7):e1011696. doi: 10.1371/journal.pcbi.1011696. eCollection 2024 Jul.
3
Information transmission in microbial and fungal communication: from classical to quantum.
J Cell Commun Signal. 2018 Jun;12(2):491-502. doi: 10.1007/s12079-018-0462-6. Epub 2018 Feb 23.
4
The cellular Ising model: a framework for phase transitions in multicellular environments.
J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2015.1092.
5
Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations.
PLoS One. 2013;8(1):e54272. doi: 10.1371/journal.pone.0054272. Epub 2013 Jan 29.

本文引用的文献

1
Bacterium in a box: sensing of quorum and environment by the LuxI/LuxR gene regulatory circuit.
J Biol Phys. 2010 Jun;36(3):317-27. doi: 10.1007/s10867-010-9186-4. Epub 2010 Feb 10.
2
Functional roles for noise in genetic circuits.
Nature. 2010 Sep 9;467(7312):167-73. doi: 10.1038/nature09326.
3
Interplay between intrinsic noise and the stochasticity of the cell cycle in bacterial colonies.
Biophys J. 2010 Jun 2;98(11):2459-68. doi: 10.1016/j.bpj.2010.02.045.
4
Role of spatial averaging in the precision of gene expression patterns.
Phys Rev Lett. 2009 Dec 18;103(25):258101. doi: 10.1103/PhysRevLett.103.258101. Epub 2009 Dec 17.
5
A synchronized quorum of genetic clocks.
Nature. 2010 Jan 21;463(7279):326-30. doi: 10.1038/nature08753.
6
Transcriptome complexity in a genome-reduced bacterium.
Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.
8
Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria.
Nat Chem Biol. 2010 Jan;6(1):41-5. doi: 10.1038/nchembio.264. Epub 2009 Nov 22.
9
Architecture-dependent noise discriminates functionally analogous differentiation circuits.
Cell. 2009 Oct 30;139(3):512-22. doi: 10.1016/j.cell.2009.07.046. Epub 2009 Oct 22.
10
A single molecule view of gene expression.
Trends Cell Biol. 2009 Nov;19(11):630-7. doi: 10.1016/j.tcb.2009.08.008. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验