Suppr超能文献

基于 mRNA 序列和功能特征的翻译速率分析与预测。

Analysis and prediction of translation rate based on sequence and functional features of the mRNA.

机构信息

Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.

出版信息

PLoS One. 2011 Jan 6;6(1):e16036. doi: 10.1371/journal.pone.0016036.

Abstract

Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1) integrating various sequence-derived and functional features, (2) applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3) being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5'UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale.

摘要

蛋白质浓度不仅取决于 mRNA 水平,还取决于翻译速度和降解速度。预测 mRNA 的翻译速度将为深入了解翻译机制和动态蛋白质组提供有价值的信息。在这项研究中,我们开发了一种新的计算模型来预测翻译速度,其特点是:(1)整合了各种序列衍生和功能特征;(2)应用最大相关性和最小冗余方法以及增量特征选择来选择特征以优化预测模型;(3)能够预测 RNA 的翻译速度属于高或低翻译速度类别。通过 Jackknife 交叉验证评估,在丰富和饥饿条件下的预测准确率分别为 68.8%和 70.0%。研究发现,与翻译速度相关的特征包括:密码子使用频率、一些基因本体富集分数、已知与其 mRNA 产物结合的 RNA 结合蛋白的数量、编码序列长度、蛋白质丰度和 5'UTR 自由能。这些发现可能为理解翻译和动态蛋白质组的机制提供有用信息。我们的翻译速度预测模型可能成为大规模注释 mRNA 翻译速度的高通量工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/665f/3017080/209cc286f055/pone.0016036.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验