Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK.
J Magn Reson. 2011 Mar;209(1):31-8. doi: 10.1016/j.jmr.2010.12.004. Epub 2010 Dec 21.
The Liouville space spin relaxation theory equations are reformulated in such a way as to avoid the computationally expensive Hamiltonian diagonalization step, replacing it by numerical evaluation of the integrals in the generalized cumulant expansion. The resulting algorithm is particularly useful in the cases where the static part of the Hamiltonian is dominated by interactions other than Zeeman (e.g. in quadrupolar resonance, low-field EPR and Spin Chemistry). When used together with state space restriction tools, the algorithm reported is capable of computing full relaxation superoperators for NMR systems with more than 15 spins.
刘维尔空间自旋弛豫理论方程被重新表述为避免计算上昂贵的哈密顿量对角化步骤,而是通过数值评估广义累积展开中的积分来代替。所得算法在哈密顿量的静态部分主要由除塞曼(例如在四极共振、低场 EPR 和自旋化学)以外的相互作用支配的情况下特别有用。当与状态空间限制工具一起使用时,所报道的算法能够计算具有超过 15 个自旋的 NMR 系统的全弛豫超级算符。