Suppr超能文献

重新聚焦 CSA 在魔角旋转旋转框架弛豫实验中的应用。

Refocusing CSA during magic angle spinning rotating-frame relaxation experiments.

机构信息

Department of Chemistry, Columbia University, New York, NY 10027, United States.

Department of Chemistry, Columbia University, New York, NY 10027, United States.

出版信息

J Magn Reson. 2018 Nov;296:130-137. doi: 10.1016/j.jmr.2018.09.004. Epub 2018 Sep 14.

Abstract

We examine coherent evolution of spin-locked magnetization during magic-angle spinning (MAS), in the context of relaxation experiments designed to probe chemical exchange (rotating-frame relaxation (R)). Coherent evolution is expected in MAS based rotating-frame relaxation decay experiments if matching conditions are met (such as, ω = nω) and if the chemical shielding anisotropy (CSA) is substantial. We show here using numerical simulations and experiments that even when such matching requirements are avoided (e.g., ω < 0.5ω, ∼1.5ω, >2.5ω), coherent evolution of spin-locked magnetization with large CSA is still considerable. The coherent evolution has important consequences on the analysis of relaxation decay and the ability to extract accurate information of interest about dynamics. We present a pulse sequence that employs rotary echoes and refocuses CSA contributions, allowing for more sensitive measurement of rotating-frame relaxation with less interference from coherent evolution. In practice, the proposed pulse sequence, REfocused CSA Rotating-frame Relaxation (RECRR) is robust to carrier frequency offset, B-field inhomogeneity, and slight miscalibrations of the refocusing pulses.

摘要

我们在旨在探测化学交换(旋转框架弛豫(R))的弛豫实验背景下,检查了在魔角旋转(MAS)期间锁定自旋的磁化强度的相干演化。如果满足匹配条件(例如,ω=nω)并且化学屏蔽各向异性(CSA)很大,则在 MAS 基于旋转框架弛豫衰减实验中可以预期相干演化。我们在这里使用数值模拟和实验表明,即使避免了这种匹配要求(例如,ω<0.5ω、∼1.5ω、>2.5ω),具有大 CSA 的自旋锁定磁化强度的相干演化仍然相当可观。相干演化对弛豫衰减的分析以及提取有关动力学的准确感兴趣信息的能力具有重要影响。我们提出了一种使用旋转回波并重新聚焦 CSA 贡献的脉冲序列,从而可以更灵敏地测量旋转框架弛豫,并且相干演化的干扰较小。实际上,所提出的脉冲序列,即重新聚焦 CSA 旋转框架弛豫(RECRR)对载波频率偏移、B 场不均匀性和聚焦脉冲的轻微失准具有鲁棒性。

相似文献

1
Refocusing CSA during magic angle spinning rotating-frame relaxation experiments.
J Magn Reson. 2018 Nov;296:130-137. doi: 10.1016/j.jmr.2018.09.004. Epub 2018 Sep 14.
3
Chemical shift anisotropy selective inversion.
J Magn Reson. 2009 Oct;200(2):233-8. doi: 10.1016/j.jmr.2009.07.003. Epub 2009 Jul 9.
4
Chemical shift anisotropy amplification.
J Magn Reson. 2004 Mar;167(1):75-86. doi: 10.1016/j.jmr.2003.11.005.
5
Slow motions in microcrystalline proteins as observed by MAS-dependent 15N rotating-frame NMR relaxation.
J Magn Reson. 2014 Nov;248:8-12. doi: 10.1016/j.jmr.2014.09.007. Epub 2014 Sep 20.
6
Deuteron rotating frame relaxation for the detection of slow motions in rotating solids.
J Magn Reson. 2022 Apr;337:107171. doi: 10.1016/j.jmr.2022.107171. Epub 2022 Feb 19.
7
Dynamics of paramagnetic agents by off-resonance rotating frame technique.
J Magn Reson. 2006 Dec;183(2):213-27. doi: 10.1016/j.jmr.2006.08.008. Epub 2006 Sep 18.
8
Use of composite refocusing pulses to form spin echoes.
J Magn Reson. 2012 Jan;214(1):68-75. doi: 10.1016/j.jmr.2011.10.006. Epub 2011 Oct 19.
9
Quantitative rotating frame relaxometry methods in MRI.
NMR Biomed. 2016 Jun;29(6):841-61. doi: 10.1002/nbm.3518. Epub 2016 Apr 21.
10
Carbon-detected deuterium solid-state NMR rotating frame relaxation measurements for protein methyl groups under magic angle spinning.
Solid State Nucl Magn Reson. 2024 Apr;130:101922. doi: 10.1016/j.ssnmr.2024.101922. Epub 2024 Feb 22.

引用本文的文献

1
Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications.
Chem Rev. 2023 Feb 8;123(3):918-988. doi: 10.1021/acs.chemrev.2c00197. Epub 2022 Dec 21.
2
Rotating Frame Relaxation in Magic Angle Spinning Solid State NMR, a Promising Tool for Characterizing Biopolymer Motion.
Chem Rev. 2022 Sep 28;122(18):14940-14953. doi: 10.1021/acs.chemrev.2c00442. Epub 2022 Sep 13.
3
Model-Free or Not?
Front Mol Biosci. 2021 Oct 25;8:727553. doi: 10.3389/fmolb.2021.727553. eCollection 2021.
4
Water orientation and dynamics in the closed and open influenza B virus M2 proton channels.
Commun Biol. 2021 Mar 12;4(1):338. doi: 10.1038/s42003-021-01847-2.
5
Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins.
Solid State Nucl Magn Reson. 2021 Feb;111:101710. doi: 10.1016/j.ssnmr.2020.101710. Epub 2021 Jan 7.
8
Microsecond Protein Dynamics from Combined Bloch-McConnell and Near-Rotary-Resonance R Relaxation-Dispersion MAS NMR.
Chemphyschem. 2019 Jan 21;20(2):276-284. doi: 10.1002/cphc.201800935. Epub 2018 Dec 20.

本文引用的文献

1
New applications of solid-state NMR in structural biology.
Emerg Top Life Sci. 2018 Apr 20;2(1):57-67. doi: 10.1042/ETLS20170088. Epub 2018 Feb 23.
3
Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR.
Methods. 2018 Sep 15;148:123-135. doi: 10.1016/j.ymeth.2018.04.015. Epub 2018 Apr 24.
4
Correction to: Characterization of fibril dynamics on three timescales by solid-state NMR.
J Biomol NMR. 2018 Mar;70(3):203. doi: 10.1007/s10858-018-0170-9.
5
Structure and Dynamics of Membrane Proteins from Solid-State NMR.
Annu Rev Biophys. 2018 May 20;47:201-222. doi: 10.1146/annurev-biophys-070816-033712. Epub 2018 Mar 2.
6
Because the Light is Better Here: Correlation-Time Analysis by NMR Spectroscopy.
Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13590-13595. doi: 10.1002/anie.201707316. Epub 2017 Sep 14.
7
Slow conformational exchange and overall rocking motion in ubiquitin protein crystals.
Nat Commun. 2017 Jul 27;8(1):145. doi: 10.1038/s41467-017-00165-8.
8
Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein.
J Am Chem Soc. 2017 Jul 12;139(27):9246-9258. doi: 10.1021/jacs.7b03974. Epub 2017 Jun 30.
9
Protein conformational dynamics studied by N and H R relaxation dispersion: Application to wild-type and G53A ubiquitin crystals.
Solid State Nucl Magn Reson. 2017 Oct;87:86-95. doi: 10.1016/j.ssnmr.2017.04.002. Epub 2017 Apr 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验