Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.
Sci Adv. 2022 Dec 9;8(49):eabq4244. doi: 10.1126/sciadv.abq4244. Epub 2022 Dec 7.
Developing fast, robust, and accurate methods for optimal control of quantum systems comprising interacting particles is one of the most active areas of current science. Although a valuable repository of algorithms is available for numerical applications in quantum control, the high computational cost is somewhat overlooked. Here, we present a fast and accurate optimal control algorithm for systems of interacting qubits, QOALA (quantum optimal control by adaptive low-cost algorithm), which is predicted to offer Formula: see text speedup for an -qubit system, compared to the state-of-the-art exact methods, without compromising overall accuracy of the optimal solution. The method is general and compatible with diverse Hamiltonian structures. The proposed approach uses inexpensive low-accuracy approximations of propagators far from the optimum, adaptively switching to higher accuracy, higher-cost propagators when approaching the optimum. In addition, the utilization of analytical Lie algebraic derivatives that do not require computationally expensive matrix exponential brings even better performance.
开发快速、鲁棒且精确的方法来对包含相互作用粒子的量子系统进行最优控制是当前科学中最活跃的领域之一。尽管已经有了用于量子控制数值应用的有价值的算法库,但高计算成本在某种程度上被忽视了。在这里,我们提出了一种用于相互作用量子位系统的快速而精确的最优控制算法,即 QOALA(通过自适应低成本算法进行量子最优控制),与最先进的精确方法相比,对于 n 量子位系统,预计将提供 Formula: see text 的加速,而不会影响最优解的整体准确性。该方法具有通用性并且与各种哈密顿结构兼容。所提出的方法在远离最优解时使用廉价且低精度的传播子近似值,并在接近最优解时自适应地切换到更高精度、更高成本的传播子。此外,使用不需要计算昂贵的矩阵指数的解析李代数导数甚至可以带来更好的性能。