The Australian National University, John Curtin School of Medical Research, 2601, Canberra, ACT, Australia.
The Australian National University, Research School of Biology, 2601, Canberra, ACT, Australia.
Chembiochem. 2024 Feb 1;25(3):e202300597. doi: 10.1002/cbic.202300597. Epub 2023 Dec 4.
Solute translocation by membrane transport proteins is a vital biological process that can be tracked, on the sub-second timescale, using nuclear magnetic resonance (NMR). Fluorinated substrate analogues facilitate such studies because of high sensitivity of F NMR and absence of background signals. Accurate extraction of translocation rate constants requires precise quantification of NMR signal intensities. This becomes complicated in the presence of J-couplings, cross-correlations, and nuclear Overhauser effects (NOE) that alter signal integrals through mechanisms unrelated to translocation. Geminal difluorinated motifs introduce strong and hard-to-quantify contributions from non-exchange effects, the nuanced nature of which makes them hard to integrate into data analysis methodologies. With analytical expressions not being available, numerical least squares fitting of theoretical models to 2D spectra emerges as the preferred quantification approach. For large spin systems with simultaneous coherent evolution, cross-relaxation, cross-correlation, conformational exchange, and membrane translocation between compartments with different viscosities, the only available simulation framework is Spinach. In this study, we demonstrate GLUT-1 dependent membrane transport of two model sugars featuring CF and CF CF fluorination motifs, with precise determination of translocation rate constants enabled by numerical fitting of 2D EXSY spectra. For spin systems and kinetic networks of this complexity, this was not previously tractable.
膜转运蛋白介导的溶质转运是一种重要的生物学过程,可以在纳秒级时间尺度上通过核磁共振(NMR)进行跟踪。由于氟代底物类似物的 F NMR 灵敏度高且背景信号不存在,因此非常适合此类研究。为了准确提取转运速率常数,需要精确量化 NMR 信号强度。但当存在 J 偶合、交叉相关和核 Overhauser 效应(NOE)时,这会变得很复杂,这些效应通过与转运无关的机制改变信号积分。双取代的氟原子基团会引入强且难以量化的非交换效应贡献,其细微性质使得它们难以整合到数据分析方法中。由于不存在解析表达式,因此对二维谱进行理论模型的数值最小二乘拟合成为首选的定量方法。对于具有同时相干演化、交叉弛豫、交叉相关、构象交换以及在不同粘度隔室之间的膜转运的大型自旋系统,唯一可用的模拟框架是 Spinach。在这项研究中,我们展示了两种带有 CF 和 CF CF 氟取代基的模型糖的 GLUT-1 依赖性膜转运,通过对 2D EXSY 谱进行数值拟合,能够精确确定转运速率常数。对于这种复杂的自旋系统和动力学网络,以前是不可行的。