University of California Santa Barbara, Department of Computer Science, Santa Barbara, USADan T. Gillespie Consulting, Castaic, USA.
IET Syst Biol. 2011 Jan;5(1):58. doi: 10.1049/iet-syb.2009.0057.
Michaelis-Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The Michaelis-Menten approximation has been thoroughly studied in the context of traditional differential equation models. The presence of small concentrations in biochemical systems, however, encourages the conversion to a discrete stochastic representation. It is shown that the Michaelis-Menten approximation is applicable in discrete stochastic models and that the validity conditions are the same as in the deterministic regime. The authors then compare the Michaelis-Menten approximation to a procedure called the slow-scale stochastic simulation algorithm (ssSSA). The theory underlying the ssSSA implies a formula that seems in some cases to be different from the well-known Michaelis-Menten formula. Here those differences are examined, and some special cases of the stochastic formulas are confirmed using a first-passage time analysis. This exercise serves to place the conventional Michaelis-Menten formula in a broader rigorous theoretical framework.
米氏动力学常用于生化模型中表示酶催化反应。米氏近似在传统微分方程模型的背景下已经得到了深入研究。然而,在生化系统中存在小浓度的情况下,鼓励将其转换为离散随机表示。结果表明,米氏近似在离散随机模型中是适用的,并且有效性条件与确定性状态相同。然后,作者将米氏近似与称为慢尺度随机模拟算法 (ssSSA) 的方法进行了比较。ssSSA 所依据的理论隐含了一个公式,在某些情况下似乎与著名的米氏公式不同。在这里,研究了这些差异,并使用首次通过时间分析确认了随机公式的一些特殊情况。该练习将传统的米氏公式置于更广泛的严格理论框架中。