Suppr超能文献

在开放酶催化反应中随机拟稳态近似的有效性:时标分离还是奇异摄动?

On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?

机构信息

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.

Mathematical Reviews, American Mathematical Society, 416 4th Street, Ann Arbor, MI, 48103, USA.

出版信息

Bull Math Biol. 2021 Nov 26;84(1):7. doi: 10.1007/s11538-021-00966-5.

Abstract

The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular perturbation theory. For several closed enzymatic reactions, the homologous extension of the quasi-steady-state approximation to the stochastic regime, known as the stochastic quasi-steady-state approximation, has been shown to be accurate under the analogous conditions that permit the quasi-steady-state reduction in the deterministic counterpart. However, it was recently demonstrated that the extension of the stochastic quasi-steady-state approximation to an open Michaelis-Menten reaction mechanism is only valid under a condition that is far more restrictive than the qualifier that ensures the validity of its corresponding deterministic quasi-steady-state approximation. In this paper, we suggest a possible explanation for this discrepancy from the lens of geometric singular perturbation theory. In so doing, we illustrate a misconception in the application of the quasi-steady-state approximation: timescale separation does not imply singular perturbation.

摘要

准稳态近似被广泛用于开发酶催化反应的简化确定性或随机模型。在确定性模型中,准稳态近似可以从奇异摄动理论中得到数学证明。对于几个封闭的酶促反应,准稳态近似在随机状态下的同源扩展,称为随机准稳态近似,在允许确定性对应物准稳态简化的类似条件下,已被证明是准确的。然而,最近的研究表明,随机准稳态近似在开放的米氏酶反应机制中的扩展仅在比确保其相应确定性准稳态近似有效性的限定条件更为严格的条件下才有效。在本文中,我们从几何奇异摄动理论的角度提出了这种差异的可能解释。通过这样做,我们说明了准稳态近似应用中的一个误解:时标分离并不意味着奇异摄动。

相似文献

5
Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.准稳态近似来自酶动力学的随机模型。
Bull Math Biol. 2019 May;81(5):1303-1336. doi: 10.1007/s11538-019-00574-4. Epub 2019 Feb 12.
6
A Kinetic Analysis of Coupled (or Auxiliary) Enzyme Reactions.耦合(或辅助)酶反应的动力学分析。
Bull Math Biol. 2018 Dec;80(12):3154-3183. doi: 10.1007/s11538-018-0513-4. Epub 2018 Oct 4.

本文引用的文献

4
Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.准稳态近似来自酶动力学的随机模型。
Bull Math Biol. 2019 May;81(5):1303-1336. doi: 10.1007/s11538-019-00574-4. Epub 2019 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验