Suppr超能文献

信息和非平衡热力学在生命系统进化中的关键作用。

The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.

机构信息

Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA.

出版信息

Bull Math Biol. 2013 Apr;75(4):589-601. doi: 10.1007/s11538-013-9821-x. Epub 2013 Feb 28.

Abstract

Living cells are spatially bounded, low entropy systems that, although far from thermodynamic equilibrium, have persisted for billions of years. Schrödinger, Prigogine, and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy, and entropy. This provided valuable insights, but not a comprehensive model. We propose the first principles of living systems must include: (1) Information dynamics, which permits conversion of energy to order through synthesis of specific and reproducible, structurally-ordered components; and (2) Nonequilibrium thermodynamics, which generate Darwinian forces that optimize the system.Living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, but this apparently precarious state allows critical response that includes: (1) Feedback so that loss of order due to environmental perturbations generate information that initiates a corresponding response to restore baseline state. (2) Death due to a return to thermodynamic equilibrium to rapidly eliminate systems that cannot maintain order in local conditions. (3) Mitosis that rewards very successful systems, even when they attain order that is too high to be sustainable by environmental energy, by dividing so that each daughter cell has a much smaller energy requirement. Thus, nonequilibrium thermodynamics are ultimately responsible for Darwinian forces that optimize system dynamics, conferring robustness sufficient to allow continuous existence of living systems over billions of years.

摘要

活细胞是具有空间限制的、低熵系统,尽管它们远离热力学平衡,但已经存在了数十亿年。薛定谔、普里戈金等人主要从秩序、能量和熵的热力学角度探索生命系统的物理原理。这提供了有价值的见解,但不是一个全面的模型。我们提出生命系统的基本原则必须包括:(1)信息动力学,它允许通过合成特定且可重复的、结构有序的组件将能量转化为秩序;(2)非平衡热力学,它产生达尔文力,使系统最优化。生命系统从根本上是不稳定的,因为它们存在于远离热力学平衡的状态,但这种明显不稳定的状态允许关键的反应,包括:(1)反馈,使环境扰动引起的秩序丧失产生信息,从而启动相应的反应来恢复基线状态。(2)死亡,由于回到热力学平衡,迅速消除那些不能在局部条件下维持秩序的系统。(3)有丝分裂,即使系统达到了环境能量无法维持的过高秩序,也会对非常成功的系统进行奖励,通过分裂使每个子细胞的能量需求大大降低。因此,非平衡热力学最终负责优化系统动力学的达尔文力,赋予足够的稳健性,使生命系统能够连续存在数十亿年。

相似文献

3
Nonequilibrium thermodynamics. II. Application to inhomogeneous systems.非平衡态热力学。II. 应用于非均匀系统。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041128. doi: 10.1103/PhysRevE.85.041128. Epub 2012 Apr 23.
9
Network thermodynamics in the post-genomic era.后基因组时代的网络热力学。
Curr Opin Microbiol. 2010 Jun;13(3):350-7. doi: 10.1016/j.mib.2010.03.001. Epub 2010 Apr 6.

引用本文的文献

1
On the Origin of Information Dynamics in Early Life.早期生命中信息动力学的起源
Life (Basel). 2025 Feb 5;15(2):234. doi: 10.3390/life15020234.
8
Origin of Cancer: An Information, Energy, and Matter Disease.癌症的起源:一种信息、能量与物质的疾病。
Front Cell Dev Biol. 2016 Nov 17;4:121. doi: 10.3389/fcell.2016.00121. eCollection 2016.
9
The quantum mitochondrion and optimal health.量子线粒体与最佳健康状态。
Biochem Soc Trans. 2016 Aug 15;44(4):1101-10. doi: 10.1042/BST20160096.
10
A Response to the Legitimacy of Brain Death in Islam.对伊斯兰教中脑死亡合法性的回应。
J Relig Health. 2016 Aug;55(4):1198-205. doi: 10.1007/s10943-016-0221-z.

本文引用的文献

1
Order in a multidimensional system.多维系统中的秩序。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011128. doi: 10.1103/PhysRevE.84.011128. Epub 2011 Jul 19.
3
Quantifying system order for full and partial coarse graining.量化完全和部分粗粒化的系统顺序。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 2):066117. doi: 10.1103/PhysRevE.82.066117. Epub 2010 Dec 23.
4
The energetics of genome complexity.基因组复杂度的能量学。
Nature. 2010 Oct 21;467(7318):929-34. doi: 10.1038/nature09486.
8
"Nanosized voltmeter" enables cellular-wide electric field mapping.“纳米电压表”可实现全细胞电场测绘。
Biophys J. 2007 Aug 15;93(4):1163-74. doi: 10.1529/biophysj.106.092452. Epub 2007 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验