Suppr超能文献

大范围调查数据的时空探索模型。

Spatiotemporal exploratory models for broad-scale survey data.

机构信息

Cornell Lab of Ornithology, Ithaca, New York 14850, USA.

出版信息

Ecol Appl. 2010 Dec;20(8):2131-47. doi: 10.1890/09-1340.1.

Abstract

The distributions of animal populations change and evolve through time. Migratory species exploit different habitats at different times of the year. Biotic and abiotic features that determine where a species lives vary due to natural and anthropogenic factors. This spatiotemporal variation needs to be accounted for in any modeling of species' distributions. In this paper we introduce a semiparametric model that provides a flexible framework for analyzing dynamic patterns of species occurrence and abundance from broad-scale survey data. The spatiotemporal exploratory model (STEM) adds essential spatiotemporal structure to existing techniques for developing species distribution models through a simple parametric structure without requiring a detailed understanding of the underlying dynamic processes. STEMs use a multi-scale strategy to differentiate between local and global-scale spatiotemporal structure. A user-specified species distribution model accounts for spatial and temporal patterning at the local level. These local patterns are then allowed to "scale up" via ensemble averaging to larger scales. This makes STEMs especially well suited for exploring distributional dynamics arising from a variety of processes. Using data from eBird, an online citizen science bird-monitoring project, we demonstrate that monthly changes in distribution of a migratory species, the Tree Swallow (Tachycineta bicolor), can be more accurately described with a STEM than a conventional bagged decision tree model in which spatiotemporal structure has not been imposed. We also demonstrate that there is no loss of model predictive power when a STEM is used to describe a spatiotemporal distribution with very little spatiotemporal variation; the distribution of a nonmigratory species, the Northern Cardinal (Cardinalis cardinalis).

摘要

动物种群的分布随时间而变化和演变。迁徙物种在一年中的不同时间利用不同的栖息地。决定物种生存的生物和非生物特征因自然和人为因素而发生变化。在任何物种分布模型的建立中都需要考虑这种时空变化。在本文中,我们引入了一个半参数模型,该模型为分析从广泛调查数据中物种出现和丰度的动态模式提供了一个灵活的框架。时空探索模型(STEM)通过简单的参数结构为开发物种分布模型的现有技术增加了必要的时空结构,而无需对潜在的动态过程有详细的了解。STEM 采用多尺度策略来区分局部和全球尺度的时空结构。用户指定的物种分布模型在局部水平上解释时空模式。然后,这些局部模式可以通过集合平均“扩展”到更大的尺度。这使得 STEM 特别适合探索由各种过程引起的分布动态。使用来自 eBird 的数据,这是一个在线公民科学鸟类监测项目,我们证明与没有施加时空结构的传统袋装决策树模型相比,使用 STEM 可以更准确地描述迁徙物种树燕(Tachycineta bicolor)的逐月分布变化。我们还证明,当使用 STEM 来描述具有很少时空变化的时空分布时,不会损失模型预测能力;非迁徙物种北红雀(Cardinalis cardinalis)的分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验