Suppr超能文献

实时和长期环境数据在预测管理生境中的滨鸟分布方面表现良好。

Both real-time and long-term environmental data perform well in predicting shorebird distributions in managed habitat.

机构信息

Point Blue Conservation Science, Petaluma, California, USA.

The Nature Conservancy, Sacramento, California, USA.

出版信息

Ecol Appl. 2022 Jun;32(4):e2510. doi: 10.1002/eap.2510. Epub 2022 Apr 24.

Abstract

Highly mobile species, such as migratory birds, respond to seasonal and interannual variability in resource availability by moving to better habitats. Despite the recognized importance of resource thresholds, species-distribution models typically rely on long-term average habitat conditions, mostly because large-extent, temporally resolved, environmental data are difficult to obtain. Recent advances in remote sensing make it possible to incorporate more frequent measurements of changing landscapes; however, there is often a cost in terms of model building and processing and the added value of such efforts is unknown. Our study tests whether incorporating real-time environmental data increases the predictive ability of distribution models, relative to using long-term average data. We developed and compared distribution models for shorebirds in California's Central Valley based on high temporal resolution (every 16 days), and 17-year long-term average surface water data. Using abundance-weighted boosted regression trees, we modeled monthly shorebird occurrence as a function of surface water availability, crop type, wetland type, road density, temperature, and bird data source. Although modeling with both real-time and long-term average data provided good fit to withheld validation data (the area under the receiver operating characteristic curve, or AUC, averaged between 0.79 and 0.89 for all taxa), there were small differences in model performance. The best models incorporated long-term average conditions and spatial pattern information for real-time flooding (e.g., perimeter-area ratio of real-time water bodies). There was not a substantial difference in the performance of real-time and long-term average data models within time periods when real-time surface water differed substantially from the long-term average (specifically during drought years 2013-2016) and in intermittently flooded months or locations. Spatial predictions resulting from the models differed most in the southern region of the study area where there is lower water availability, fewer birds, and lower sampling density. Prediction uncertainty in the southern region of the study area highlights the need for increased sampling in this area. Because both sets of data performed similarly, the choice of which data to use may depend on the management context. Real-time data may ultimately be best for guiding dynamic, adaptive conservation actions, whereas models based on long-term averages may be more helpful for guiding permanent wetland protection and restoration.

摘要

高度迁徙的物种,如候鸟,通过迁徙到更好的栖息地来应对季节性和年际资源可用性的变化。尽管资源阈值的重要性已得到认可,但物种分布模型通常依赖于长期平均栖息地条件,这主要是因为难以获得大范围、时间分辨率高的环境数据。遥感技术的最新进展使得更频繁地测量不断变化的景观成为可能;然而,这在模型构建和处理方面通常需要付出代价,并且这种努力的附加值是未知的。我们的研究测试了在相对于使用长期平均数据的情况下,纳入实时环境数据是否会提高分布模型的预测能力。我们根据高时间分辨率(每 16 天)和 17 年长时间平均地表水数据,为加利福尼亚中央山谷的涉禽开发并比较了分布模型。使用丰度加权增强回归树,我们根据地表水可用性、作物类型、湿地类型、道路密度、温度和鸟类数据源,将每月涉禽出现情况建模为函数。尽管使用实时和长期平均数据建模都为保留的验证数据提供了良好的拟合(所有分类群的接收者操作特征曲线下面积,AUC,平均在 0.79 到 0.89 之间),但模型性能存在微小差异。最佳模型纳入了长期平均条件和实时洪水的空间模式信息(例如,实时水体的周长-面积比)。在实时地表水与长期平均地表水有很大差异的时间段内(特别是在 2013-2016 年干旱年份)和在间歇性洪水的月份或地点,实时和长期平均数据模型的性能没有实质性差异。模型的空间预测在研究区域的南部差异最大,该区域的水资源可用性较低、鸟类较少且采样密度较低。研究区域南部的预测不确定性突出表明需要在该区域增加采样。由于两套数据的性能相似,因此选择使用哪套数据可能取决于管理背景。实时数据最终可能最适合指导动态、适应性保护行动,而基于长期平均值的模型可能更有助于指导永久性湿地保护和恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659c/9286402/800d3283d748/EAP-32-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验