Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
J Biol Chem. 2011 Apr 22;286(16):14057-64. doi: 10.1074/jbc.M110.179465. Epub 2011 Jan 26.
In a recent directed-evolution study, Escherichia coli D-sialic acid aldolase was converted by introducing eight point mutations into a new enzyme with relaxed specificity, denoted RS-aldolase (also known formerly as L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase), which showed a preferred selectivity toward L-KDO. To investigate the underlying molecular basis, we determined the crystal structures of D-sialic acid aldolase and RS-aldolase. All mutations are away from the catalytic center, except for V251I, which is near the opening of the (α/β)(8)-barrel and proximal to the Schiff base-forming Lys-165. The change of specificity from D-sialic acid to RS-aldolase can be attributed mainly to the V251I substitution, which creates a narrower sugar-binding pocket, but without altering the chirality in the reaction center. The crystal structures of D-sialic acid aldolase·l-arabinose and RS-aldolase·hydroxypyruvate complexes and five mutants (V251I, V251L, V251R, V251W, and V251I/V265I) of the D-sialic acid aldolase were also determined, revealing the location of substrate molecules and how the contour of the active site pocket was shaped. Interestingly, by mutating Val251 alone, the enzyme can accept substrates of varying size in the aldolase reactions and still retain stereoselectivity. The engineered D-sialic acid aldolase may find applications in synthesizing unnatural sugars of C(6) to C(10) for the design of antagonists and inhibitors of glycoenzymes.
在最近的一项定向进化研究中,通过在一种新酶中引入八个点突变,将大肠杆菌 D-唾液酸醛缩酶转化为具有较宽松特异性的酶,称为 RS-醛缩酶(以前也称为 L-3-脱氧-甘露-2-辛糖酸(L-KDO)醛缩酶),该酶对 L-KDO 表现出优先选择性。为了研究潜在的分子基础,我们测定了 D-唾液酸醛缩酶和 RS-醛缩酶的晶体结构。除了靠近(α/β)(8)-桶开口且靠近形成席夫碱的 Lys-165 的 V251I 外,所有突变均远离催化中心。特异性从 D-唾液酸变为 RS-醛缩酶主要归因于 V251I 取代,该取代产生了一个更窄的糖结合口袋,但未改变反应中心的手性。D-唾液酸醛缩酶·l-阿拉伯糖和 RS-醛缩酶·羟丙酮酸复合物的晶体结构以及 D-唾液酸醛缩酶的五个突变体(V251I、V251L、V251R、V251W 和 V251I/V265I)也被测定,揭示了底物分子的位置以及活性位点口袋的轮廓是如何形成的。有趣的是,通过单独突变 Val251,该酶可以在醛缩酶反应中接受不同大小的底物,并且仍然保留立体选择性。工程化的 D-唾液酸醛缩酶可能在合成 C(6)至 C(10)的非天然糖用于糖基酶的拮抗剂和抑制剂的设计方面具有应用前景。