Suppr超能文献

II类果糖-1,6-二磷酸醛缩酶的晶体结构显示出一个嵌入常见折叠结构中的新型双核金属结合活性位点。

The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold.

作者信息

Cooper S J, Leonard G A, McSweeney S M, Thompson A W, Naismith J H, Qamar S, Plater A, Berry A, Hunter W N

机构信息

Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Structure. 1996 Nov 15;4(11):1303-15. doi: 10.1016/s0969-2126(96)00138-4.

Abstract

BACKGROUND

[corrected] Aldolases catalyze a variety of condensation and cleavage reactions, with exquisite control on the stereochemistry. These enzymes, therefore, are attractive catalysts for synthetic chemistry. There are two classes of aldolase: class I aldolases utilize Schiff base formation with an active-site lysine whilst class II enzymes require a divalent metal ion, in particular zinc. Fructose-1,6-bisphosphate aldolase (FBP-aldolase) is used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. Structures are available for class I FBP-aldolases but there is a paucity of detail on the class II enzymes. Characterization is sought to enable a dissection of structure/activity relationships which may assist the construction of designed aldolases for use as biocatalysts in synthetic chemistry.

RESULTS

The structure of the dimeric class II FBP-aldolase from Escherichia coli has been determined using data to 2.5 A resolution. The asymmetric unit is one subunit which presents a familiar fold, the (alpha/beta)8 barrel. The active centre, at the C-terminal end of the barrel, contains a novel bimetallic-binding site with two metal ions 6.2 A apart. One ion, the identity of which is not certain, is buried and may play a structural or activating role. The other metal ion is zinc and is positioned at the surface of the barrel to participate in catalysis.

CONCLUSIONS

Comparison of the structure with a class II fuculose aldolase suggests that these enzymes may share a common mechanism. Nevertheless, the class II enzymes should be subdivided into two categories on consideration of subunit size and fold, quaternary structure and metal-ion binding sites.

摘要

背景

醛缩酶催化多种缩合和裂解反应,对立体化学具有精确控制。因此,这些酶是合成化学中有吸引力的催化剂。醛缩酶有两类:I类醛缩酶利用与活性位点赖氨酸形成席夫碱,而II类酶需要二价金属离子,特别是锌。果糖-1,6-二磷酸醛缩酶(FBP-醛缩酶)用于糖异生和糖酵解;该酶控制磷酸二羟丙酮与3-磷酸甘油醛的缩合以产生果糖-1,6-二磷酸。I类FBP-醛缩酶的结构已可知,但关于II类酶的细节却很少。旨在进行表征以剖析结构/活性关系,这可能有助于构建设计的醛缩酶,用作合成化学中的生物催化剂。

结果

已使用分辨率为2.5埃的数据确定了来自大肠杆菌的二聚体II类FBP-醛缩酶的结构。不对称单元是一个亚基,呈现出常见的折叠结构,即(α/β)8桶状结构。桶状结构C末端的活性中心包含一个新颖的双金属结合位点,两个金属离子相距6.2埃。其中一个离子的身份不确定,被掩埋,可能起结构或激活作用。另一个金属离子是锌,位于桶状结构表面以参与催化。

结论

将该结构与II类岩藻糖醛缩酶进行比较表明,这些酶可能具有共同的机制。然而,考虑到亚基大小和折叠、四级结构和金属离子结合位点,II类酶应分为两类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验