Babič Jan, Kunavar Tjasa, Oztop Erhan, Kawato Mitsuo
Laboratory for Neuromechanics and Biorobotics, Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.
Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
PLoS Comput Biol. 2025 May 9;21(5):e1013089. doi: 10.1371/journal.pcbi.1013089. eCollection 2025 May.
Our study explores how ecological aspects of motor learning enhance survival by improving movement efficiency and mitigating injury risks during task failures. Traditional motor control theories mainly address isolated body movements and often overlook these ecological factors. We introduce a novel computational motor control approach, incorporating ecological fitness and a strategy that alternates between success-driven movement efficiency and failure-driven safety, akin to win-stay/lose-shift tactics. In our experiments, participants performed squat-to-stand movements under novel force perturbations. They adapted effectively through various adaptive motor control mechanisms to avoid falls, reducing failure rates rapidly. The results indicate a high-level ecological controller in human motor learning that switches objectives between safety and movement efficiency, depending on failure or success. This approach is supported by policy learning, internal model adaptation, and adaptive feedback control. Our findings offer a comprehensive perspective on human motor control, integrating risk management in a hierarchical reinforcement learning framework for real-world environments.
我们的研究探讨了运动学习的生态方面如何通过提高运动效率和降低任务失败期间的受伤风险来增强生存能力。传统的运动控制理论主要关注孤立的身体动作,往往忽略了这些生态因素。我们引入了一种新颖的计算运动控制方法,该方法结合了生态适应性以及一种在成功驱动的运动效率和失败驱动的安全之间交替的策略,类似于赢则继续/输则改变的策略。在我们的实验中,参与者在新的力扰动下进行深蹲起立动作。他们通过各种适应性运动控制机制有效地进行了适应,以避免摔倒,迅速降低了失败率。结果表明,人类运动学习中存在一种高级生态控制器,它根据失败或成功在安全和运动效率之间切换目标。这种方法得到了策略学习、内部模型适应和自适应反馈控制的支持。我们的研究结果为人类运动控制提供了一个全面的视角,将风险管理整合到针对现实世界环境的分层强化学习框架中。