Suppr超能文献

萘普生钠、萘普生和安慰剂给药后牙科疼痛模型中疼痛强度和信息性脱落的建模。

Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration.

机构信息

Clinical Pharmacology & DMPK, AstraZeneca R&D Södertälje, Uppsala, Sweden.

出版信息

Br J Clin Pharmacol. 2011 Jun;71(6):899-906. doi: 10.1111/j.1365-2125.2011.03924.x.

Abstract

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

• Modelling has been used to describe the pain relief and dropout for a few non-steroidal anti-inflammatory drugs.

WHAT THIS STUDY ADDS

• This study shows the relationship between dose, plasma concentration, pain intensity and dropout for naproxen and naproxcinod. It also extends previous models by using a visual analogue scale for pain intensity instead of modelling pain relief on a categorical scale, and shows the value of including informative dropout in the simulations for visual predictive checks.

AIMS

To describe pain intensity (PI) measured on a visual analogue scale (VAS) and dropout due to request for rescue medication after administration of naproxcinod, naproxen or placebo in 242 patients after wisdom tooth removal. METHODS Non-linear mixed effects modelling was used to describe the plasma concentrations of naproxen, either formed from naproxcinod or from naproxen itself, and their relationship to PI and dropout. Goodness of fit was assessed by simultaneous simulations of PI and dropout.

RESULTS

Baseline PI for the typical patient was 52.7 mm. The PI was influenced by placebo effects, using an exponential model, and by naproxen concentrations using a sigmoid E(max) model. Typical maximal placebo effect was a decrease in PI by 20.2%, with an onset rate constant of 0.237 h(-1). EC(50) was 0.135 µmol l(-1). A Weibull time-to-event model was used for the dropout, where the hazard was dependent on the predicted PI and by the PI at baseline. Since the dropout was not at random, it was necessary to include the simulated dropout in visual predictive checks (VPC) of PI.

CONCLUSIONS

This model describes the relationship between drug effects, PI and the likelihood of dropout after naproxcinod, naproxen and placebo administration. The model provides an opportunity to describe the effects of other doses or formulations, after dental extraction. VPC created by simultaneous simulations of PI and dropout provides a good way of assessing the goodness of fit when there is informative dropout.

摘要

已知信息

  • 模型已被用于描述几种非甾体抗炎药的止痛效果和停药率。

本研究新增内容

  • 本研究显示了剂量、血浆浓度、疼痛强度和萘普生和萘普辛诺德停药之间的关系。它还通过使用视觉模拟量表(VAS)来衡量疼痛强度,而不是在分类量表上建模止痛效果,从而扩展了以前的模型,并在模拟中包含信息性停药,以进行视觉预测检查。

目的

描述 242 名智齿切除术后患者使用萘普辛诺德、萘普生或安慰剂后,使用视觉模拟量表(VAS)测量的疼痛强度(PI)和因请求救援药物而导致的停药情况。

方法

使用非线性混合效应模型来描述萘普生(无论是由萘普辛诺德形成还是由萘普生本身形成)的血浆浓度及其与 PI 和停药的关系。通过同时模拟 PI 和停药来评估拟合优度。

结果

典型患者的基线 PI 为 52.7mm。PI 受安慰剂效应影响,采用指数模型,受萘普生浓度影响,采用 Sigmoid E(max)模型。典型的最大安慰剂效应是 PI 下降 20.2%,起始速率常数为 0.237 h(-1)。EC(50)为 0.135µmol l(-1)。使用威布尔时间事件模型来描述停药情况,其中风险取决于预测的 PI 和基线时的 PI。由于停药不是随机的,因此需要在 PI 的视觉预测检查(VPC)中包含模拟的停药。

结论

该模型描述了奈普生、萘普辛诺德和安慰剂给药后药物作用、PI 和停药可能性之间的关系。该模型为描述拔牙后其他剂量或制剂的作用提供了机会。通过同时模拟 PI 和停药来创建 VPC,可以在存在信息性停药时提供一种很好的评估拟合优度的方法。

相似文献

2
6
Analgesic safety and efficacy of diclofenac sodium softgels on postoperative third molar extraction pain.
J Oral Maxillofac Surg. 2004 Jul;62(7):806-15. doi: 10.1016/j.joms.2003.12.019.
10
A phase 2 study of naproxen submicron particle capsules in patients with post-surgical dental pain.
Adv Ther. 2013 Oct;30(10):885-96. doi: 10.1007/s12325-013-0057-9. Epub 2013 Oct 15.

引用本文的文献

2
Finding the right hazard function for time-to-event modeling: A tutorial and Shiny application.
CPT Pharmacometrics Syst Pharmacol. 2022 Aug;11(8):991-1001. doi: 10.1002/psp4.12797. Epub 2022 Apr 28.
3
Analysis of opioid consumption in clinical trials: a simulation based analysis of power of four approaches.
J Pharmacokinet Pharmacodyn. 2017 Aug;44(4):325-333. doi: 10.1007/s10928-017-9522-4. Epub 2017 Apr 7.
4
Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics.
CPT Pharmacometrics Syst Pharmacol. 2017 Feb;6(2):87-109. doi: 10.1002/psp4.12161. Epub 2017 Feb 10.
5
A Model-Based Approach for Joint Analysis of Pain Intensity and Opioid Consumption in Postoperative Pain.
AAPS J. 2016 Jul;18(4):1013-22. doi: 10.1208/s12248-016-9921-2. Epub 2016 Apr 26.
6
A Pharmacokinetic-Pharmacodynamic Model of Morphine Exposure and Subsequent Morphine Consumption in Postoperative Pain.
Pharm Res. 2016 May;33(5):1093-103. doi: 10.1007/s11095-015-1853-5. Epub 2016 Jan 11.
7
Application of a hazard-based visual predictive check to evaluate parametric hazard models.
J Pharmacokinet Pharmacodyn. 2016 Feb;43(1):57-71. doi: 10.1007/s10928-015-9454-9. Epub 2015 Nov 13.
8
Performance of nonlinear mixed effects models in the presence of informative dropout.
AAPS J. 2015 Jan;17(1):245-55. doi: 10.1208/s12248-014-9700-x. Epub 2014 Nov 25.

本文引用的文献

1
Joint modeling of dizziness, drowsiness, and dropout associated with pregabalin and placebo treatment of generalized anxiety disorder.
J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):565-84. doi: 10.1007/s10928-009-9137-5. Epub 2009 Nov 8.
3
Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia.
Clin Pharmacol Ther. 2009 Jul;86(1):84-91. doi: 10.1038/clpt.2009.44. Epub 2009 Apr 22.
4
Pain relief model for a COX-2 inhibitor in patients with postoperative dental pain.
Br J Clin Pharmacol. 2008 Jul;66(1):60-70. doi: 10.1111/j.1365-2125.2008.03175.x. Epub 2008 Jun 3.
5
Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies.
J Pharmacokinet Pharmacodyn. 2007 Oct;34(5):711-26. doi: 10.1007/s10928-007-9066-0. Epub 2007 Jul 26.
7
Variability in the population pharmacokinetics of pyrazinamide in South African tuberculosis patients.
Eur J Clin Pharmacol. 2006 Sep;62(9):727-35. doi: 10.1007/s00228-006-0141-z. Epub 2006 May 10.
8
Clinical pharmacokinetics of the cyclooxygenase inhibiting nitric oxide donator (CINOD) AZD3582.
J Pharm Pharmacol. 2005 Dec;57(12):1539-54. doi: 10.1211/jpp.57.12.0004.
10
PsN-Toolkit--a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM.
Comput Methods Programs Biomed. 2005 Sep;79(3):241-57. doi: 10.1016/j.cmpb.2005.04.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验