Department of Zoology, University of Otago, Dunedin, New Zealand.
J Evol Biol. 2011 Apr;24(4):699-711. doi: 10.1111/j.1420-9101.2010.02210.x. Epub 2011 Jan 27.
Information theoretic approaches and model averaging are increasing in popularity, but this approach can be difficult to apply to the realistic, complex models that typify many ecological and evolutionary analyses. This is especially true for those researchers without a formal background in information theory. Here, we highlight a number of practical obstacles to model averaging complex models. Although not meant to be an exhaustive review, we identify several important issues with tentative solutions where they exist (e.g. dealing with collinearity amongst predictors; how to compute model-averaged parameters) and highlight areas for future research where solutions are not clear (e.g. when to use random intercepts or slopes; which information criteria to use when random factors are involved). We also provide a worked example of a mixed model analysis of inbreeding depression in a wild population. By providing an overview of these issues, we hope that this approach will become more accessible to those investigating any process where multiple variables impact an evolutionary or ecological response.
信息论方法和模型平均法越来越受欢迎,但这种方法对于那些没有信息论正式背景的研究人员来说,应用于典型的许多生态和进化分析中的复杂模型可能具有挑战性。对于那些没有信息论正式背景的研究人员来说,这尤其如此。在这里,我们强调了模型平均复杂模型的一些实际障碍。虽然这并不是一个详尽的综述,但我们确定了一些具有暂定解决方案的重要问题(例如处理预测变量之间的共线性;如何计算模型平均参数),并突出了未来研究中解决方案不明确的领域(例如何时使用随机截距或斜率;涉及随机因素时应使用哪些信息准则)。我们还提供了一个在野生种群中分析近交衰退的混合模型分析的示例。通过概述这些问题,我们希望这种方法能够更容易被那些研究多个变量影响进化或生态反应的过程的人所接受。