School of Earth and Environment, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009, Australia.
J Exp Bot. 2011 Apr;62(7):2251-64. doi: 10.1093/jxb/erq456. Epub 2011 Jan 27.
Magnesium is pivotal for activating a large number of enzymes; hence, magnesium plays an important role in numerous physiological and biochemical processes affecting plant growth and development. Magnesium can also ameliorate aluminium phytotoxicity, but literature reports on the dynamics of magnesium homeostasis upon exposure to aluminium are rare. Herein existing knowledge on the magnesium transport mechanisms and homeostasis maintenance in plant cells is critically reviewed. Even though overexpression of magnesium transporters can alleviate aluminium toxicity in plants, the mechanisms governing such alleviation remain obscure. Possible magnesium-dependent mechanisms include (i) better carbon partitioning from shoots to roots; (ii) increased synthesis and exudation of organic acid anions; (iii) enhanced acid phosphatase activity; (iv) maintenance of proton-ATPase activity and cytoplasmic pH regulation; (v) protection against an aluminium-induced cytosolic calcium increase; and (vi) protection against reactive oxygen species. Future research should concentrate on assessing aluminium toxicity and tolerance in plants with overexpressed or antisense magnesium transporters to increase understanding of the aluminium-magnesium interaction.
镁对于激活大量酶至关重要;因此,镁在影响植物生长和发育的众多生理和生化过程中起着重要作用。镁还可以减轻铝的植物毒性,但关于暴露于铝时镁动态平衡的文献报道很少。本文批判性地回顾了植物细胞中镁转运机制和平衡维持的现有知识。尽管过量表达镁转运蛋白可以减轻植物的铝毒性,但这种缓解的机制尚不清楚。可能依赖镁的机制包括:(i)从地上部分向根部分配更好的碳;(ii)增加有机酸阴离子的合成和分泌;(iii)增强酸性磷酸酶活性;(iv)维持质子-ATP 酶活性和细胞质 pH 调节;(v)防止铝诱导的细胞质钙增加;和(vi)防止活性氧的产生。未来的研究应集中在评估过表达或反义镁转运体的植物中的铝毒性和耐受性,以增加对铝-镁相互作用的理解。