Suppr超能文献

人类生物运动处理的神经生理学:一项高密度电描记图研究。

The neurophysiology of human biological motion processing: a high-density electrical mapping study.

机构信息

Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, Orangeburg, NY 10962, USA.

出版信息

Neuroimage. 2011 May 1;56(1):373-83. doi: 10.1016/j.neuroimage.2011.01.058. Epub 2011 Jan 26.

Abstract

The neural processing of biological motion (BM) is of profound experimental interest since it is often through the movement of another that we interpret their immediate intentions. Neuroimaging points to a specialized cortical network for processing biological motion. Here, high-density electrical mapping and source-analysis techniques were employed to interrogate the timing of information processing across this network. Participants viewed point-light-displays depicting standard body movements (e.g. jumping), while event-related potentials (ERPs) were recorded and compared to ERPs to scrambled motion control stimuli. In a pair of experiments, three major phases of BM-specific processing were identified: 1) The earliest phase of BM-sensitive modulation was characterized by a positive shift of the ERP between 100 and 200 ms after stimulus onset. This modulation was observed exclusively over the right hemisphere and source-analysis suggested a likely generator in close proximity to regions associated with general motion processing (KO/hMT). 2) The second phase of BM-sensitivity occurred from 200 to 350 ms, characterized by a robust negative-going ERP modulation over posterior middle temporal regions bilaterally. Source-analysis pointed to bilateral generators at or near the posterior superior temporal sulcus (STS). 3) A third phase of processing was evident only in our second experiment, where participants actively attended the BM aspect of the stimuli, and was manifest as a centro-parietal positive ERP deflection, likely related to later cognitive processes. These results point to very early sensory registration of biological motion, and highlight the interactive role of the posterior STS in analyzing the movements of other living organisms.

摘要

生物运动(BM)的神经处理具有深远的实验意义,因为我们通常通过另一个人的运动来理解他们的即时意图。神经影像学指出了专门用于处理生物运动的皮质网络。在这里,使用高密度电映射和源分析技术来询问整个网络的信息处理时间。参与者观看了描绘标准身体运动(例如跳跃)的点光显示,同时记录了事件相关电位(ERPs)并将其与随机运动控制刺激的 ERPs 进行了比较。在两项实验中,确定了三个与 BM 特定处理相关的主要阶段:1)最早的 BM 敏感调制阶段的特征是刺激后 100 到 200 毫秒之间 ERP 的正偏移。这种调制仅在右半球上观察到,并且源分析表明,可能的发生器与与一般运动处理(KO/hMT)相关的区域非常接近。2)从 200 到 350 毫秒,第二阶段的 BM 敏感性发生,特征是双侧后颞中区域的强烈负向 ERP 调制。源分析指出,双侧发生器在或接近后颞上回(STS)。3)只有在我们的第二项实验中才会出现第三阶段的处理,在该实验中,参与者主动关注刺激的 BM 方面,表现为中央顶叶的正 ERP 偏转,可能与后期认知过程有关。这些结果表明了对生物运动的非常早期的感觉登记,并且强调了后 STS 在分析其他生物体运动中的交互作用。

相似文献

1
The neurophysiology of human biological motion processing: a high-density electrical mapping study.
Neuroimage. 2011 May 1;56(1):373-83. doi: 10.1016/j.neuroimage.2011.01.058. Epub 2011 Jan 26.
3
An event-related potentials study of biological motion perception in humans.
Neurosci Lett. 2003 Jun 19;344(1):41-4. doi: 10.1016/s0304-3940(03)00413-0.
4
Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
Exp Brain Res. 2018 Mar;236(3):907-918. doi: 10.1007/s00221-018-5175-9. Epub 2018 Jan 23.
5
Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.
Neuroimage. 2016 Nov 15;142:337-350. doi: 10.1016/j.neuroimage.2016.05.059. Epub 2016 Jun 2.
6
An event-related potentials study of biological motion perception in human infants.
Brain Res Cogn Brain Res. 2005 Feb;22(2):301-4. doi: 10.1016/j.cogbrainres.2004.08.008.
8
Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study.
Neuroimage. 2007 Jul 1;36(3):877-88. doi: 10.1016/j.neuroimage.2007.01.053. Epub 2007 Mar 12.
10
Infants' cortical processing of biological motion configuration - A fNIRS study.
Infant Behav Dev. 2020 Aug;60:101450. doi: 10.1016/j.infbeh.2020.101450. Epub 2020 May 15.

引用本文的文献

1
2
Neural Dynamics in Extrastriate Cortex Underlying False Alarms.
J Neurosci. 2025 May 14;45(20):e1733242025. doi: 10.1523/JNEUROSCI.1733-24.2025.
3
Neural Dynamics Underlying False Alarms in Extrastriate Cortex.
bioRxiv. 2024 Sep 12:2024.09.06.611738. doi: 10.1101/2024.09.06.611738.
4
Effects of acute stress on biological motion perception.
PLoS One. 2024 Sep 18;19(9):e0310502. doi: 10.1371/journal.pone.0310502. eCollection 2024.
5
Noncortical coding of biological motion in newborn chicks' brain.
Cereb Cortex. 2024 Jun 4;34(6). doi: 10.1093/cercor/bhae262.
6
Cerebellar Contribution to Emotional Body Language Perception.
Adv Exp Med Biol. 2022;1378:141-153. doi: 10.1007/978-3-030-99550-8_10.
8
Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction.
Front Psychol. 2022 Mar 3;13:792872. doi: 10.3389/fpsyg.2022.792872. eCollection 2022.
9
Pitting optic flow, object motion, and biological motion against each other.
J Vis. 2020 Aug 3;20(8):18. doi: 10.1167/jov.20.8.18.
10
Distinct cerebellar regions for body motion discrimination.
Soc Cogn Affect Neurosci. 2022 Feb 3;17(1):72-80. doi: 10.1093/scan/nsz088.

本文引用的文献

1
Top down effect of strategy on the perception of human biological motion: a pet investigation.
Cogn Neuropsychol. 1998 Sep 1;15(6-8):553-82. doi: 10.1080/026432998381023.
2
The visual perception of human locomotion.
Cogn Neuropsychol. 1998 Sep 1;15(6-8):535-52. doi: 10.1080/026432998381014.
4
Reading about the actions of others: biological motion imagery and action congruency influence brain activity.
Neuropsychologia. 2010 May;48(6):1607-15. doi: 10.1016/j.neuropsychologia.2010.01.028. Epub 2010 Feb 6.
5
Social cognition and the anterior temporal lobes.
Neuroimage. 2010 Feb 15;49(4):3452-62. doi: 10.1016/j.neuroimage.2009.11.012. Epub 2009 Nov 18.
6
Cerebellar engagement in an action observation network.
Cereb Cortex. 2010 Feb;20(2):486-91. doi: 10.1093/cercor/bhp117. Epub 2009 Jun 22.
7
Understanding others' actions and goals by mirror and mentalizing systems: a meta-analysis.
Neuroimage. 2009 Nov 15;48(3):564-84. doi: 10.1016/j.neuroimage.2009.06.009. Epub 2009 Jun 11.
9
Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.
Cereb Cortex. 2009 Dec;19(12):2767-96. doi: 10.1093/cercor/bhp055. Epub 2009 Mar 27.
10
Developmental changes in point-light walker processing during childhood and adolescence: an event-related potential study.
Neuroscience. 2009 Jun 16;161(1):311-25. doi: 10.1016/j.neuroscience.2009.03.026. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验